Industrial 5G overview, application and test bed construction

Table of contents

1. 5G white paper and foundation

1. Performance requirements for communication technology in industrial application scenarios

2. Development history of 5G wireless technology

3. Development history of 5G NR standard

4. 5G network deployment methods

 2. Industrial 5G test bed

3. 5G + Smart Factory Application Demonstration

4. Industrial 5G application implementation method 


1. 5G white paper and foundation

1. Performance requirements for communication technology in industrial application scenarios

Table 1 Performance requirements for information and communication technologies in typical application scenarios
production scene reliability Latency(ms) Packet size (Bytes) Equipment Quantity work space (m)
sport control printing device >99.9999% <2 20 >100 100X100X30
Tools >99.9999% <0.5 50 about 20 15X15X3
baler >99.9999% <1 40 about 50 10X5X3
move robot Cooperative Motion Control >99.9999% 1 40~250 100 <1 km^2
video operation remote control >99.9999% 10~100 15~150 100 <1 km^2
mobile control panel Assembly robot or milling machine >99.9999% 4~8 40~250 4 10X10
mobile crane >99.9999% 12 40~250 2 40X60
Process automation (production monitoring) >99.99% >50 different 10000 units/km^2

2. 5G wireless standard formulation process

ITU: In the second half of 2017, the solicitation of 5G technical proposals will be launched, and the formulation of 5G standards will be completed in 2020.

Figure 1 Development trend of 5G wireless technology

R15 is mainly aimed at eMBB scenarios, R16 is mainly aimed at URLCC, D2D and other scenarios, and R17 is mainly aimed at mMTC scenarios. 

3. 5G NR Standards and Spectrum

Figure 2 5G NR standard development history

3.1 5G Spectrum 

FR1: sub 6G frequency band, sub 3G below 3 GHz, and c-band between 3 and 6 GHz.

FR2: millimeter wave, rich in resources.

Table 2 Comparison of advantages and disadvantages of 5G spectrum
Band type Band advantage Band disadvantage deployment strategy
sub 3G Low frequency band, good coverage performance Available frequency resources are limited, most of which are occupied by the current system Deployment is not recommended at the initial stage, but can be deployed later using refarming and cloudair technologies as a wide coverage layer for 5G
c-band NR adds new frequency bands, rich spectrum resources, and large bandwidth The uplink coverage is poor, and the uplink and downlink imbalance problems are obvious The main frequency band of 5G can be deployed with a maximum bandwidth of 100 MHz. Uplink and downlink unbalance problems can be solved through uplink and downlink decoupling features
millimeter wave NR new frequency band, the largest cell bandwidth Poor coverage, high performance requirements for RF devices Initial deployment is not the main choice, but mainly used as hotspot eMBB capacity supplement, D2D and other special scenarios

3.2 China's 5G medium and low frequency spectrum allocation

Table 3 5G Spectrum Allocation in China 
China Mobile

2.515-2.675 GHz, 4.8-4.9 GHz

China Unicom 3.5-3.6 GHz
China Telecom 3.4-3.5 GHz
China Radio and Television 700 MHz, 4.9-4.96 GHz
Table 4 5G NR frequency range
NR frequency band number

Uplink frequency band

Base station reception/UE transmission

downlink frequency band

Base station transmit/UE receive

duplex mode
n41 2496-2690 MHz 2496-2690 MHz TDD
n77 3300-4200 MHz 3300-4200 MHz TDD
n78 3300-3800 MHz 3300-3800 MHz TDD
n79 4400-5000 MHz 4400-5000 MHz TDD

4. 5G network deployment methods

The deployment of the 5G network mainly includes the radio access network RAN ​​and the core network 5GC . The wireless access network is mainly composed of base stations, which provide users with wireless access functions, and the core network mainly provides users with Internet access services and corresponding management functions.

According to the different anchor points of the 5G control plane, 3GPP is divided into two deployment methods: independent deployment ( SA ) and non-independent deployment ( NSA ). SA refers to building a new network, including new base stations, backhaul links, and core networks, and accessing 5GC with 5G NR as the anchor point of the control plane . NSA refers to the deployment of 5G networks using the existing 4G network foundation.

Currently, 3GPP lists eight 5G architecture options , and their deployment methods are as follows.

Figure 3 3GPP's 4G/5G converged deployment method
Table 5 Comparison of 5G network deployment solutions
Advantage disadvantage
Standalone NR deployment option 2

No impact on the existing 2G/3G/4G network, no impact on existing network users;

It can be quickly deployed and directly introduces new 5G network elements, without the need to modify the existing network;

Introduce 5GC to provide new 5G functions and services.

When 5G NR does not have continuous coverage, voice continuity depends on cross-system switching, and QoS cannot be guaranteed;

NR and 5GC need to be deployed at the same time, and the cost is high.

Non-Standalone NR Deployment option 3 series

No requirement for NR coverage;

Minor changes, less investment, fast network construction;

Voice service continuity is guaranteed;

It is suitable for the situation where the proportion of NR terminals introduced at the initial stage is small.

Unable to support new services introduced by 5GC
option 7 series

Data services have no requirement for NR coverage;

Support new services introduced by 5GC, realize full 5G capabilities, and effectively avoid multiple upgrades of subsequent wireless networks;

Voice service continuity is guaranteed by VoLTE, requiring continuous VoLTE coverage;

It is suitable for introduction when the 5GC industry is mature.

New 5GC needs to be built, and the progress of network construction depends on the maturity of the 5GC industry;

It is necessary to promote the voice fallback process of CSFB from 5G to 2G/3G network;

LTE needs to be transformed and upgraded to eLTE, which requires major changes.

option 4 series The 5G base station is the master station, the 4G base station is the slave station, and the master and slave stations share the 5G core network.

 2. Industrial 5G test bed

5G-ACIA (Alliance for 5G Connected Industry and Automation) is the center for solving, discussing and evaluating 5G-related technical, regulatory and business issues in the industrial field, 5G-ACIA (Alliance for 5G Connected Industry and Automation) A hub for technical, regulatory and business issues related to 5G.

Table 6  Industrial 5G test bed
test bed name Introduction

ABB's 5G-based industrial robot test platform

ABB与爱立信合作,作为欧盟5G-SMART项目的一部分,在瑞典Kista的爱立信智能工厂建立了5G测试平台,以探讨5G如何改善制造业生产,该平台重点关注机器人技术。瑞典Kista测试平台的主要目的是研究和验证生产用例,其中用于控制工业机器人的软件已从机器人本身重新定位到边缘云平台,并通过5G连接到机器人。其他需要验证的功能是边缘云中用于对象识别和定位的机器图像处理,边缘云中机器人状态的存储以及基于增强现实的车间操作员的支持。
博世半导体工厂的5G-SMART测试平台 通过在罗伊特林根的博世半导体生产工厂建立和运营5G测试平台,共同验证5G技术及其在工业自动化中的用例。该测试平台包括一个独立的,非公共的5G室内网络实施方案,覆盖了8000平方米的工业生产车间。测试台的目的是演示5G如何在实际生产环境中支持工厂自动化和内部物流。这可以通过在工厂车间中开发和测试用例(例如启用5G的云控制自动导引车(AGV)和基于5G的工业以太网)来实现。
华为慕尼黑基于测试平台的5G智能制造和工业AI服务 华为针对基于5G的智能制造和工业AI服务的测试环境旨在加快5G单机版、5G移动专用网的提供。测试平台的目的是在考虑到5G标准的下一个版本的情况下,在未来三年内为联网的智能工厂和可扩展的AI服务开发和验证新颖的解决方案。该环境包括以下用例的验证和性能度量活动:1. 带有AI Machine Vision云处理功能的联网AGV(无人驾驶运输系统);2. 用于质量控制通过无线监控进行预测性维护;3. 机器检查无线自动化模块的安全性
亚琛欧洲5G工业园区测试平台 测试平台包括5G室内和室外解决方案,该解决方案延伸到亚琛Fraunhofer IPT工业生产车间。测试平台合作伙伴Fraunhofer IPT,爱立信,u-blox和Marposs正在开发和验证用于工件和机器监控的多传感器平台以及用于监控切削刀具状况的声发射传感器系统。另外,各种数据源通过新型同步设备进行同步,以将数据合并为数字孪生。该试验台是欧盟项目5G-SMART的一部分。

三、5G + 智慧工厂应用示范

表7 5G+智能工厂应用示范项目
项目名称 项目背景 解决方案
宏电5G+WiFi Mesh组网方案成功应用在5G智慧工厂示范项目中  当前主要面临以下难题:

(1)有线部署困难:由于厂区大,环境复杂,光纤网线会存在设备老化和故障情况,影响使用效率;

(2)WiFi组网不稳定:现有WiFi组网一个工厂需要安装多个路由器,两台路由器切换区域容易发生信号不稳现象,且WiFi组网无法满足生产对时延上及可靠性的需求。

(3)联网设备多、数据量大,网络不稳定造成影响大:工厂联网设备和联网终端的增加,每秒钟的计算量、交互量随之增加,网络基础设施不足等网络问题造成数据采集中断。如算力问题导致出现排队、经常停机等事件。

(4)工厂数据处理量大、云端数据管理任务重:对设备状态远程控制,包括设备运行和产能,以及潜在故障分析等,尤其是潜在故障分析,需要建立庞大的数据库,配合边缘计算才能完成。

通过5G AIoT新型技术融合应用,实现公司精益化、智能化管理,降低生产运营成本,提高生产效益,其工厂数字化改造、设备物联化需求迫切。因此提出了5G智慧工厂Mesh无线自组网方案。

(1)定制开发了5G无线Mesh组网和强AP,实现对存量终端的接入和无缝漫游服务;摆脱有线困境,实现对“有线﹢WiFi”网络的整体替代和低成本改造。

(2)部署5G SA + MEC边缘计算,建立设备到工厂云平台的私有网络通道,实现流量本地卸载,有效保障工厂数据安全性。支持本地数据处理和分析,扩展部署5G边缘计算和网络切片,实现设备预测性维护、智能巡检等5G智造场景的应用。

……

四、5G与工业应用的融合

1、5G网络在工业企业的部署模式 

(a)虚拟专网:又称公网共用,网络切片虚拟专网

(b)混合虚拟专网:又称公网专用,边缘UPF混合专网; 

(c)独立专网:又称专网专用,智能定制专网

表8 工业5G网络的部署模式
部署方式 简单描述
混合5G专网:部署独立于移动运营商的5G公共网络,物理隔离的专用5G网络(5G孤岛),企业或移动运营商可建立专用的5G网络。 公网共用 利用5G切片等技术在面向公众服务的 网络中,为企业用户提供QoS定制化的专用通道服务(时延、带宽等),实现不同用户不同业务间的逻辑隔离。
公网专用 原有在运营商核心网侧部署的UPF等下沉部署在企业内或附近,保障企业业务数据本地存储,具有较高的安全性和实时性。
独立5G专网:通过共享移动运营商的5G公共网络资源池来构建私有5G网络,运营商将为企业建立专用的5G网络。 专网专用 工业企业专用的5G网络,只承载企业自有业务,与公网隔离。

2、工业5G融合终端​​​​​​​

Companies currently on the market that can provide 5G commercial chips include: Huawei HiSilicon, Ziguang Zhanrui, MediaTek, Qualcomm and Samsung. Huawei HiSilicon and Qualcomm can provide 5G commercial chips and module solutions. Based on these two solutions, Changhong, Quectel, Sunsea Smart, Fibocom and other companies have launched corresponding 5G module products.

At present, 5G converged terminals in industrial scenarios mainly appear in the form of data terminals such as gateways. The ways of integrating 5G and industrial applications include:

  • 1) 5G modules ( industrial equipment embedded with 5G communication modules ) are integrated into the equipment to realize the deep integration of 5G and industrial communication applications;
  • 2) Use integrated gateways, CPE , etc. to realize seamless connection and interoperability between 5G and existing industrial systems (generally adopted by industrial enterprises at this stage). For example, on the production line, using the MES industrial gateway integrated with 5G modules,

With the wide application of remote control, intelligent logistics and other industrial Internet scenarios that require high network speed and are sensitive to delay, the form of integrated 5G industrial terminals will gradually expand from existing data terminals such as gateways to various 5G industry terminals. and private network needs to accelerate the maturity and diversification of 5G fusion terminals.

Guess you like

Origin blog.csdn.net/smiling_sweety/article/details/120707366