HAL library interrupt mode for serial communication

1. Generate chip code through STMCube

1. Set RCC

Check as shown
insert image description here

2. Set SYS

as shown in the picture
insert image description here

3. Set the USART

Select USART1 in Connectivity , as shown in the figure
insert image description here

4. Set NVIC

insert image description here
tick the last one

5. Create a project to generate code

insert image description here
Also, the save path and file name cannot appear in Chinese, and remember to select MDK-ARM to generate code.

Two, configure the keil code

After opening the generated keil file, find the main.c file

1. Define global variables before the main function

char c;//指令 0:停止  1:开始
char message[]="hello Windows\n";//输出信息
char tips[]="CommandError\n";//提示1
char tips1[]="Start.....\n";//提示2
char tips2[]="Stop......\n";//提示3
int flag=0;//标志 0:停止发送 1.开始发送

2. Set the receiving interrupt in the main function

function description

function prototype

 HAL_UART_Receive_IT(UART_HandleTypeDef *huart, uint8_t *pData, uint16_t Size)

Function:
Function: The serial port interrupts receiving, and receives the specified length of data in an interrupted manner.
The general process is to set the data storage location, receive the data length, and then enable the serial port receiving interrupt.
When data is received, a serial port interrupt will be triggered.
Then, the serial port interrupt function is processed until the specified length of data is received, then
the interrupt is closed, and the interrupt receiving callback function is entered, and the receiving interrupt is no longer triggered. (Trigger interrupt only once)

parameter

UART_HandleTypeDef *huart      UATR的别名    
 huart1  *pData      			接收到的数据存放地址
 Size                      		接收的字节数
HAL_UART_Receive_IT(&huart1, (uint8_t *)&c, 1);

3. Add the transmission code in the while loop of the main function

if(flag==1){
    
    
			//发送信息
			HAL_UART_Transmit(&huart1, (uint8_t *)&message, strlen(message),0xFFFF); 
			
			//延时
			HAL_Delay(1000);
		}

4. Rewrite the interrupt processing function under the main function

The approximate location is just after the above while loop

void HAL_UART_RxCpltCallback(UART_HandleTypeDef *huart)
{
    
    
	
	//当输入的指令为0时,发送提示并改变flag
	if(c=='0'){
    
    
		flag=0;
		HAL_UART_Transmit(&huart1, (uint8_t *)&tips2, strlen(tips2),0xFFFF); 
	}
	
	//当输入的指令为1时,发送提示并改变flag
	else if(c=='1'){
    
    
		flag=1;
		HAL_UART_Transmit(&huart1, (uint8_t *)&tips1, strlen(tips1),0xFFFF); 
	}
	
	//当输入不存在指令时,发送提示并改变flag
	else {
    
    
		flag=0;
		HAL_UART_Transmit(&huart1, (uint8_t *)&tips, strlen(tips),0xFFFF); 
	}

	//重新设置中断
		HAL_UART_Receive_IT(&huart1, (uint8_t *)&c, 1);  
}

5. After the main function is modulated, roughly

void SystemClock_Config(void);
static void MX_GPIO_Init(void);
static void MX_USART1_UART_Init(void);
char c;//指令 0:停止  1:开始
char message[]="hello Windows\n";//输出信息
char tips[]="CommandError\n";//提示1
char tips1[]="Start.....\n";//提示2
char tips2[]="Stop......\n";//提示3
int flag=0;//标志 0:停止发送 1.开始发送
int main(void)
{
    
    
HAL_Init();
SystemClock_Config();
MX_GPIO_Init();
  MX_USART1_UART_Init();
  HAL_UART_Receive_IT(&huart1, (uint8_t *)&c, 1);
  while (1)
  {
    
    
	  if(flag==1){
    
    
			//发送信息
			HAL_UART_Transmit(&huart1, (uint8_t *)&message, strlen(message),0xFFFF); 
			
			//延时
			HAL_Delay(1000);
		}
		}
		}
		void HAL_UART_RxCpltCallback(UART_HandleTypeDef *huart)
{
    
    
	
	//当输入的指令为0时,发送提示并改变flag
	if(c=='0'){
    
    
		flag=0;
		HAL_UART_Transmit(&huart1, (uint8_t *)&tips2, strlen(tips2),0xFFFF); 
	}
	
	//当输入的指令为1时,发送提示并改变flag
	else if(c=='1'){
    
    
		flag=1;
		HAL_UART_Transmit(&huart1, (uint8_t *)&tips1, strlen(tips1),0xFFFF); 
	}
	
	//当输入不存在指令时,发送提示并改变flag
	else {
    
    
		flag=0;
		HAL_UART_Transmit(&huart1, (uint8_t *)&tips, strlen(tips),0xFFFF); 
	}

	//重新设置中断
		HAL_UART_Receive_IT(&huart1, (uint8_t *)&c, 1);  
}
/**
  * @brief System Clock Configuration
  * @retval None
  */
void SystemClock_Config(void)
{
    
    
  RCC_OscInitTypeDef RCC_OscInitStruct = {
    
    0};
  RCC_ClkInitTypeDef RCC_ClkInitStruct = {
    
    0};

  /** Initializes the RCC Oscillators according to the specified parameters
  * in the RCC_OscInitTypeDef structure.
  */
  RCC_OscInitStruct.OscillatorType = RCC_OSCILLATORTYPE_HSI;
  RCC_OscInitStruct.HSIState = RCC_HSI_ON;
  RCC_OscInitStruct.HSICalibrationValue = RCC_HSICALIBRATION_DEFAULT;
  RCC_OscInitStruct.PLL.PLLState = RCC_PLL_NONE;
  if (HAL_RCC_OscConfig(&RCC_OscInitStruct) != HAL_OK)
  {
    
    
    Error_Handler();
  }

  /** Initializes the CPU, AHB and APB buses clocks
  */
  RCC_ClkInitStruct.ClockType = RCC_CLOCKTYPE_HCLK|RCC_CLOCKTYPE_SYSCLK
                              |RCC_CLOCKTYPE_PCLK1|RCC_CLOCKTYPE_PCLK2;
  RCC_ClkInitStruct.SYSCLKSource = RCC_SYSCLKSOURCE_HSI;
  RCC_ClkInitStruct.AHBCLKDivider = RCC_SYSCLK_DIV1;
  RCC_ClkInitStruct.APB1CLKDivider = RCC_HCLK_DIV1;
  RCC_ClkInitStruct.APB2CLKDivider = RCC_HCLK_DIV1;

  if (HAL_RCC_ClockConfig(&RCC_ClkInitStruct, FLASH_LATENCY_0) != HAL_OK)
  {
    
    
    Error_Handler();
  }
}

/**
  * @brief USART1 Initialization Function
  * @param None
  * @retval None
  */
static void MX_USART1_UART_Init(void)
{
    
    

  /* USER CODE BEGIN USART1_Init 0 */

  /* USER CODE END USART1_Init 0 */

  /* USER CODE BEGIN USART1_Init 1 */

  /* USER CODE END USART1_Init 1 */
  huart1.Instance = USART1;
  huart1.Init.BaudRate = 115200;
  huart1.Init.WordLength = UART_WORDLENGTH_8B;
  huart1.Init.StopBits = UART_STOPBITS_1;
  huart1.Init.Parity = UART_PARITY_NONE;
  huart1.Init.Mode = UART_MODE_TX_RX;
  huart1.Init.HwFlowCtl = UART_HWCONTROL_NONE;
  huart1.Init.OverSampling = UART_OVERSAMPLING_16;
  if (HAL_UART_Init(&huart1) != HAL_OK)
  {
    
    
    Error_Handler();
  }
  /* USER CODE BEGIN USART1_Init 2 */

  /* USER CODE END USART1_Init 2 */

}

/**
  * @brief GPIO Initialization Function
  * @param None
  * @retval None
  */
static void MX_GPIO_Init(void)
{
    
    

  /* GPIO Ports Clock Enable */
  __HAL_RCC_GPIOD_CLK_ENABLE();
  __HAL_RCC_GPIOA_CLK_ENABLE();

}

/* USER CODE BEGIN 4 */

/* USER CODE END 4 */

/**
  * @brief  This function is executed in case of error occurrence.
  * @retval None
  */
void Error_Handler(void)
{
    
    
  /* USER CODE BEGIN Error_Handler_Debug */
  /* User can add his own implementation to report the HAL error return state */
  __disable_irq();
  while (1)
  {
    
    
  }
  /* USER CODE END Error_Handler_Debug */
}

#ifdef  USE_FULL_ASSERT
/**
  * @brief  Reports the name of the source file and the source line number
  *         where the assert_param error has occurred.
  * @param  file: pointer to the source file name
  * @param  line: assert_param error line source number
  * @retval None
  */
void assert_failed(uint8_t *file, uint32_t line)
{
    
    
  /* USER CODE BEGIN 6 */
  /* User can add his own implementation to report the file name and line number,
     ex: printf("Wrong parameters value: file %s on line %d\r\n", file, line) */
  /* USER CODE END 6 */
}
#endif /* USE_FULL_ASSERT */

Generate a hex file after modulating and running the code

3. Use mcuisp to burn hex files

insert image description here
After the burning is successful, use the fire tools software to display the results

4. Results display

insert image description here
After opening the serial port, input 1 to send data, the run box starts outputting hello Windows, and
insert image description here
after inputting 0, stops outputting hello Windows.

V. Summary

In this experiment, it is required to use strings to interrupt the output, but it was not completed in time, and it will be improved after thinking.

6. Reference

https://blog.csdn.net/qq_47281915/article/details/121053903

Guess you like

Origin blog.csdn.net/qq_54761976/article/details/127472294