【Mathematical equation】Separation of variables method

2 Separation of variables

2.0 Ordinary Differential Equations

2.0.1 Homogeneous & Inhomogeneous Equations

  • Homogeneous equation y ′ ( x ) = P ( x ) y ( x ) y'(x)=P(x)y(x)Y(x)=P ( x ) y ( x ) separate variables and integrate on both sides
    • y ( x ) = C e ∫ P ( x ) d x y(x)=Ce^{\int P(x)dx} y ( x )=This _P(x)dx
    • P(x) is constant y ′ ( x ) = my ( x ) → y ( x ) = C emx y'(x)=my(x)\rightarrow y(x)=Ce^{mx}Y(x)=my(x)y ( x )=This _mx
  • Inhomogeneous equation y ′ ( x ) = P ( x ) y ( x ) + Q ( x ) y'(x)=P(x)y(x)+Q(x)Y(x)=P(x)y(x)+Q ( x ) constant variation method
    • y ( x ) = e ∫ P ( x ) d x ( ∫ Q ( x ) ⋅ e − ∫ P ( x ) d x d x + C ) y(x)=e^{\int P(x)dx}(\int Q(x)\cdot e^{-\int P(x)dx}dx+C) y ( x )=andP(x)dx(Q(x)andP(x)dxdx+C)

2.0.2 Second-order homogeneous ordinary differential equations with constant coefficients

a 2 y ′ ′ ( x ) + a 1 y ′ ( x ) + a 0 y ( x ) = 0 a_2y''(x)+a_1y'(x)+a_0y(x)=0 a2Y′′(x)+a1Y(x)+a0y ( x )=0

  • Special Operation: a 2 r 2 + a 1 r + a 0 = 0 a_2r^2+a_1r+a_0=0a2r2+a1r+a0=0 , r eigenroot

  • 2 real roots r 1 ≠ r 2 r_1\neq r_2r1=r2: 通解 y ( x ) = A e r 1 x + B e r 2 x y(x)=Ae^{r_1x}+Be^{r_2x} y ( x )=But your1x+Ber2x

  • 1 real root r 1 = r 2 r_1=r_2r1=r2: 通解 y ( x ) = ( A x + B ) e r x y(x)=(Ax+B)e^{rx} y ( x )=(Ax+B)erx

  • 复根r 1 = α + β i , r 2 = α − β i r_1=\alpha+\beta i, r_2=\alpha-\beta ir1=a+β i ,r2=aβ i : 通解y ( x ) = e α x ( A cos ⁡ β x + B sin ⁡ β x ) y(x)=e^{\alpha x}(A\cos\beta x+B\sin\beta x)y ( x )=andαx(Acosβx+Bsinβx)
    insert image description here

  • ρ 2 R ′ ( ρ ) + ρ R ′ ( ρ ) − λ R ( ρ ) = 0 \rho^2R''(\rho)+\rho R'(\rho)-\lambda R(\rho) =0r2 R" (p)+ρR (p)λ R ( ρ )=0

    • ρ = ex \ rho = e ^ xr=andx

2.1 Eigenvalue problem

2.1.1 Common eigenvalue problems

  • Ordinary Differential Equation X ′ ′ ( x ) + λ X ( x ) = 0 X''(x)+\lambda X(x)=0X′′(x)+λX(x)=0

    • λ < 0 \lambda<0 l<0, X ( x ) = A e − λ x + B e − − λ x X(x)=Ae^{\sqrt{-\lambda}x}+Be^{-\sqrt{-\lambda}x} X(x)=But youl x+Bel x
    • λ = 0 \lambda=0l=0, X ( x ) = A x + B X(x)=Ax+B X(x)=Ax+B
    • λ > 0 \lambda>0l>0 ,X ( x ) = A cos ⁡ λ x + B sin ⁡ λ x X(x)=A\cos\sqrt{\lambda}x+B\sin\sqrt{\lambda}xX(x)=Acosl x+Bsinl x
  • contains the constant λ \lambda to be determinedThe eigenvalue problem of λ, λ \lambdaλ eigenvalue,X ( x ) X(x)X ( x ) characteristic function

  • { X ′ ′ ( x ) + λ X ( x ) = 0 X ( 0 ) = 0 , X ( l ) = 0 \left\{\begin{matrix}X''(x)+\lambda X(x)=0 \\X(0)=0, X(l)=0\end{matrix}\right. { X′′(x)+λX(x)=0X(0)=0 ,X(l)=0

    1. λ < 0 \lambda<0 l<0 , A=B=0, trivial solution
    2. λ = 0 \lambda=0l=0 , A=B=0, trivial solution
    3. λ > 0 \lambda>0l>0 ,{ λ n = ( n π l ) 2 X n ( x ) = B n sin ⁡ n π lx , n = 1 , 2 , 3... \left\{\begin{matrix}\lambda _n=( \frac{n\pi}{l} )^2 \\ X_n(x)=B_n\sin\frac{n\pi}{l}x,n=1,2,3... \end{matrix} \right.{ ln=(l)2Xn(x)=Bnsinlx,n=1 ,2 ,3 ...
      1. sin ⁡ n π lxn = 1 ∞ {\sin\frac{n\pi}{l}x}_{n=1}^\inftysinlxn=1
      2. C n = 2 l ∫ 0 l f ( x ) sin ⁡ n π l x d x C_n=\frac{2}{l}\int_0^l f(x)\sin\frac{n\pi}{l}xdx Cn=l20lf(x)sinlx d x

2.1.2 Theory on the Eigenvalue Problem

  • SLequationddx ( k ( x ) dydx ) − q ( x ) y ( x ) + λ ρ ( x ) y ( x ) = 0 , x ∈ ( a , b ) \frac{d}{dx}(k( x)\frac{dy}{dx})-q(x)y(x)+\lambda\rho(x)y(x)=0,x\in(a,b)dxd(k(x)dxd y)q(x)y(x)+λρ(x)y(x)=0 ,x(a,b)
    • Eigenvalues: Minor Boundary Condition, Periodicity, Natural Boundary Condition
    • k ( x ) = ρ ( x ) = 1 , q ( x ) = 0 k(x)=\rho(x)=1,q(x)=0k(x)=p ( x )=1 ,q(x)=0: y ′ ′ ( x ) + λ y ( x ) = 0 y''(x)+\lambda y(x)=0 Y′′(x)+λy(x)=0
    • k ( x ) = ρ ( x ) = x , q ( x ) = n 2 x k(x)=\rho(x)=x,q(x)=\frac{n^2}{x} k(x)=p ( x )=x,q(x)=xn2: x 2 y ′ ′ ( x ) + x y ′ ( x ) + ( λ x 2 − n 2 ) y ( x ) = 0 x^2y''(x)+xy'(x)+(\lambda x^2-n^2)y(x)=0 x2 y′′(x)+xy(x)+(λx2n2 )and(x)=0
    • k ( x ) = 1 − x 2 , ρ ( x ) = 1 , q ( x ) = 0 k(x)=1-x^2,\rho(x)=1,q(x)=0k(x)=1x2 ,p ( x )=1 ,q(x)=0: ( 1 − x ) 2 y ′ ′ ( x ) − 2 x y ′ ( x ) + λ y ( x ) = 0 (1-x)^2y''(x)-2xy'(x)+\lambda y(x)=0 ( 1x)2 y′′(x)2xy(x)+λy(x)=0
    1. There are countable real eigenvalues ​​-> monotonically increasing sequence 0 ≤ λ 1 ≤ λ 2 ≤ . . . ≤ λ n ≤ {0\leq\lambda_1\leq\lambda_2\leq...\leq\lambda_n\leq}0l1l2...ln
      countable eigenfunctions{ yx ( x ) } , n = 1 , 2 , 3... \{y_x(x)\}, n=1,2,3...{ andx(x)},n=1 ,2 ,3...
    2. All eigenvalues ​​are non-negative λ n ≥ 0 , n = 1 , 2 , 3... \lambda_n\geq 0, n=1,2,3...ln0 ,n=1 ,2 ,3...
    3. Characteristic function system { yn ( x ) } n = 1 n = ∞ \{y_n(x)\}_{n=1}^{n=\infty}{ andn(x)}n=1n=L ρ 2 [ a , b ] L_\rho^2[a,b]Lr2[a,b ] on the weight functionρ ( x ) \rho(x)ρ(x)的正交系 ∫ a b ρ ( x ) y n ( x ) y m ( x ) d x = { 0 n ≠ m ∣ ∣ y n ∣ ∣ 2 2 n = m \int_a^b\rho(x)y_n(x)y_m(x)dx=\left\{\begin{matrix}0 &n\neq m \\||y_n||_2^2 &n=m\end{matrix}\right. abp ( x ) yn( x ) ym(x)dx={ 0∣∣ yn22n=mn=m
    4. Characteristic function system { yn ( x ) } n = 1 n = ∞ \{y_n(x)\}_{n=1}^{n=\infty}{ andn(x)}n=1n=L ρ 2 [ a , b ] L_\rho^2[a,b]Lr2[a,b ] on the weight functionρ ( x ) \rho(x)The complete system of ρ ( x )

2.1.3Matlab

  • Second Order Ordinary Differential Equation
    Find d 2 ydx 2 + y = 1 − x 2 π \frac{d^{2} y}{dx^{2}}+y=1-\frac{x^{2}}{ \pi}dx2d2 y+Y=1Pix2General solution
    • y=dsolve('D2y+y=1-x^2/pi','x')
      
    { d 2 ydx 2 + y = 1 − x 2 π y ( 0 ) = 0.2 , y ′ ( 0 ) = 0.5 \left\{\begin{array}{l}\frac{d^{2} y} {dx^{2}}+y=1-\frac{x^{2}}{\pi} \\y(0)=0.2, y^{\prime}(0)=0.5\end{array} \right.{ dx2d2 y+Y=1Pix2and ( 0 )=0.2 ,Y (0)=0.5special solution, drawing
    • y=dsolve('D2y+y=1-x^2/pi','y(0)=0.2,Dy(0)=0.5','x')
      ezplot(y),aixs([-3 3 -0.5 2])
      
  • 常微分方程组 { d u d t = 3 u − 2 v d v d t + v = 2 u \left\{\begin{array}{l}\frac{d u}{d t}=3 u-2 v \\\frac{d v}{d t}+v=2 u\end{array}\right. { dtof _=3u2 vdtd v+in=2 and
    1. Seek a general solution
    • [u,v]=dsolve('Du=3*u-2*v','Dv+v=2*u')
      
    2. To satisfy the initial conditions u ( 0 ) = 1 , v ( 0 ) = 0 u(0)=1, v(0)=0in ( 0 )=1 ,in ( 0 )=0 special solution
    • [u,v]=dsolve('Du=3*u-2*v','Dv+v=2*u','u(0)=1,v(0)=0','t')
      

2.2 One-dimensional wave equation, one-dimensional heat equation solution

2.2.1 One-dimensional wave equation

{ ∂ 2 u ∂ t 2 = a 2 ∂ 2 u ∂ x 2 0 < x < l , t > 0 u ∣ x = 0 = u ∣ x = l = 0 u ∣ t = 0 = ϕ ( x ) , ∂ u ∂ t ∣ t = 0 = ψ ( x ) \left\{\begin{array}{l} \frac{\partial^{2} \boldsymbol{u}}{\partial \boldsymbol{t}^{2}}=\boldsymbol{a}^{2} \frac{\partial^{2} \boldsymbol{u}}{\partial \boldsymbol{x}^{2}} \quad 0<\boldsymbol{x}<\boldsymbol{l}, \boldsymbol{t}>0 \\ \left.\boldsymbol{u}\right|_{\boldsymbol{x}=0}=\left.\boldsymbol{u}\right|_{\boldsymbol{x}=l}=0 \\ \left.\boldsymbol{u}\right|_{t=0}=\phi(\boldsymbol{x}),\left.\frac{\partial \boldsymbol{u}}{\partial \boldsymbol{t}}\right|_{t=0}=\psi(\boldsymbol{x}) \end{array}\right. t22 and=a2x22 and0<x<l,t>0ux=0=ux=l=0ut=0=ϕ ( x ) ,t u t=0=ψ ( x )
insert image description here

  • u n ( x , t ) u_n(x,t) inn(x,t ) is sinusoidal at any time
    • t = t 0 t=t_0 t=t0 u n ( x , t 0 ) u_n(x,t_0) inn(x,t0) is a sinusoid whose amplitude varies with time
    • x = x 0 x=x_0 x=x0 u n ( x 0 , t ) u_n(x_0,t) inn(x0,t ) Simple harmonic vibration
  • Arbitrarily determined time un ( x , t ) = A n ′ sin ⁡ n π lx u_{n}(x, t)=A_{n}^{\prime} \sin \frac{n \pi}{l} xinn(x,t)=Ansinlx
    • n+1 n+1n+1 zero,nnn个极值点,u 1 , u 2 , u 3 u_1,u_2,u_3in1,in2,in3is a series of standing waves

2.2.2 One-dimensional heat equation solution

insert image description here

2.3 The solution method of Laplace equation definite solution problem

2.3.1 Laplace in Cartesian Coordinate System

insert image description here

2.3.2 The solution of Laplace definite solution problem in two-dimensional circular domain

  1. 定解问题 ∂ 2 u ∂ x 2 + ∂ 2 u ∂ y 2 = 0 \frac{\partial^{2} \boldsymbol{u}}{\partial \boldsymbol{x}^{2}}+\frac{\partial^{2} \boldsymbol{u}}{\partial \boldsymbol{y}^{2}}=0 x22 and+y22 and=0
  2. Rationalization { x = ρ cos ⁡ θ y = ρ sin ⁡ θ , 0 ≤ θ ≤ 2 π \left\{\begin{array}{l}x=\rho \cos \theta \\y=\rho\; without \theta,\end{array}\quad 0 \leq \theta \leq 2 \pi\right.{ x=rcosiY=rsini ,0i2 p.m
  3. ∂ u ∂ x = ∂ u ∂ ρ ∂ ρ ∂ x + ∂ u ∂ θ ∂ θ ∂ x = v \frac{\partial \boldsymbol{u}}{\partial \boldsymbol{x}}=\frac{\partial \boldsymbol{u}}{\partial \rho} \frac{\partial \rho}{\partial \boldsymbol{x}}+\frac{\partial \boldsymbol{u}}{\partial \theta} \frac{\partial \theta}{\partial \boldsymbol{x}}=\boldsymbol{v} x u=ρ ux ρ+θ ux θ=v代入得 $ \begin{array}{l}\frac{1}{\rho} \frac{\partial}{\partial \rho}\left(\rho \frac{\partial \boldsymbol{u}}{\partial \rho}\right)+\frac{1}{\rho^{2}} \frac{\partial^{2} \boldsymbol{u}}{\partial \theta^{2}}=0 \\frac{\partial^{2} \boldsymbol{u}}{\partial \rho^{2}}+\frac{1}{\rho} \frac{\partial \boldsymbol{u}}{\partial \rho}+\frac{1}{\rho^{2}} \frac{\partial^{2} \boldsymbol{u}}{\partial \theta^{2}}=0\end{array} $

2.4 Inhomogeneous equations

波方程 { ∂ 2 u ∂ t 2 = a 2 ∂ 2 u ∂ x 2 + f ( x , t ) , 0 < x < l , t > 0 u ∣ x = 0 = u ∣ x = l = 0 u ∣ t = 0 = ϕ ( x ) , ∂ u ∂ t ∣ t = 0 = Ψ ( x ) \left\{\begin{array}{l}\frac{\partial^{2} \boldsymbol{u}}{\partial \boldsymbol{t}^{2}}=\boldsymbol{a}^{2} \frac{\partial^{2} \boldsymbol{u}}{\partial \boldsymbol{x}^{2}}+\boldsymbol{f}(\boldsymbol{x}, \boldsymbol{t}), \quad 0<\boldsymbol{x}<\boldsymbol{l}, \boldsymbol{t}>0 \\\left.\boldsymbol{u}\right|_{\boldsymbol{x}=0}=\left.\boldsymbol{u}\right|_{\boldsymbol{x}=l}=0 \\\left.\boldsymbol{u}\right|_{t=0}=\phi(\boldsymbol{x}),\left.\frac{\partial \boldsymbol{u}}{\partial \boldsymbol{t}}\right|_{t=0}=\varPsi(\boldsymbol{x})\end{array}\right. t22 and=a2x22 and+f(x,t),0<x<l,t>0ux=0=ux=l=0ut=0=ϕ ( x ) ,t u t=0=Ψ ( x )
拆解 u ( x , t ) = v ( x , t ) + w ( x , t ) u(x,t)=v(x,t)+w(x,t) u(x,t)=v(x,t)+w(x,t)

2.4.1 Eigenfunction method

wave equation

{ ∂ 2 v ∂ t 2 = a 2 ∂ 2 v ∂ x 2 + f ( x , t ) v ∣ x = 0 = v ∣ x = l = 0 v ∣ t = 0 = 0 , ∂ v ∂ t ∣ t = 0 = 0 \left\{\begin{array}{l}\frac{\partial^{2} v}{\partial t^{2}}=a^{2} \frac{\partial^{2} v}{\partial x^{2}}+f(x, t) \\\left.v\right|_{x=0}=\left.v\right|_{x=l}=0 \\\left.v\right|_{t=0}=0,\left.\frac{\partial v}{\partial t}\right|_{t=0}=0\end{array}\right. t22 v=a2x22 v+f(x,t)vx=0=vx=l=0vt=0=0 ,t v t=0=0

  1. Homogeneous equation + homogeneous boundary condition { ∂ 2 v ∂ t 2 = a 2 ∂ 2 v ∂ x 2 v ∣ x = 0 = v ∣ x = l = 0 \left\{\begin{array}{l}\ frac{\partial^{2} \boldsymbol{v}}{\partial \boldsymbol{t}^{2}}=\boldsymbol{a}^{2} \frac{\partial^{2} \boldsymbol{v }}{\partial \boldsymbol{x}^{2}} \\\left.\boldsymbol{v}\right|_{\boldsymbol{x}=0}=\left.\boldsymbol{v}\right| _{\boldsymbol{x}=l}=0\end{array}\right.{ t22 v=a2x22 vvx=0=vx=l=0
    1. Eigenvalue problem { X ′ ′ ( x ) + λ X ( x ) = 0 X ( 0 ) = X ( l ) = 0 \left\{\begin{array}{l}\boldsymbol{X}^{\prime \prime}(\boldsymbol{x})+\lambda \boldsymbol{X}(\boldsymbol{x})=0 \\\boldsymbol{X}(0)=\boldsymbol{X}(\boldsymbol{l}) =0\end{array}\right.{ X′′(x)+λX(x)=0X(0)=X(l)=0
      1. Characteristic function X n ( x ) = B n sin ⁡ n π lx , n = 1 , 2 , . . . X_n(x)=B_n\sin\frac{n\pi}{l}x,n=1,2 ,...Xn(x)=Bnsinlx,n=1 ,2 ,...
      2. Suppose the inhomogeneous equation solution v ( x , t ) = ∑ n = 1 ∞ vn ( t ) sin ⁡ n π lxv(x,t)=\sum_{n=1}^{\infty}v_n(t)\ sin \frac{n\pi}{l}xv(x,t)=n=1inn(t)sinlx
  2. f ( x , t ) f(x,t) f(x,t ) according to the sequence ofeigenfunctions { sin ⁡ n π lx } n = 1 ∞ \{\sin\frac{n\pi}{l}x\}_{n=1}^{\infty}{ sinlx}n=1Expand into series form
    1. f ( x , t ) = ∑ n = 1 ∞ f n ( t ) sin ⁡ n π l x f(x,t)=\sum_{n=1}^{\infty}f_n(t)\sin\frac{n\pi}{l}x f(x,t)=n=1fn(t)sinlx
    2. f n ( t ) = 2 l ∫ 0 l f ( x , t ) sin ⁡ n π l x d x f_n(t)=\frac{2}{l}\int_0^lf(x,t)\sin\frac{n\pi}{l}xdx fn(t)=l20lf(x,t)sinlx d x
  3. The above results are brought into the inhomogeneous equation
    1. insert image description here
    2. Get the ordinary differential equation problem { vn ′ ′ ( t ) + ( n π al ) 2 vn ( t ) = fn ( t ) vn ( 0 ) = 0 , vn ′ ( 0 ) = 0 \left\{\begin{array }{l}v_{n}^{\prime \prime}(t)+\left(\frac{n \pi a}{l}\right)^{2} v_{n}(t)=f_{ n}(t) \\v_{n}(0)=0, \quad v_{n}^{\prime}(0)=0\end{array}\right.{ inn(t)+(lnπa)2inn(t)=fn(t)inn( 0 )=0 ,inn( 0 )=0
    3. Laplace Transform
      1. vn ( t ) = ln π a ∫ 0 tfn ( τ ) sin ⁡ n π a ( t − τ ) ld τ \boldsymbol{v}_{n}(t)=\frac{l}{n \pi a} \int_{0}^{t} f_{n}(\tau) \sin \frac{n \pi a(t-\tau)}{l} d \tauinn(t)=nπal0tfn( t )sinlnpa ( t τ )dτ
      2. v ( x , t ) = ∑ n = 1 ∞ ln π a ∫ 0 tfn ( τ ) sin ⁡ n π a ( t − τ ) ld τ sin ⁡ n π lx \boldsymbol{v}(\boldsymbol{x} \boldsymbol{t})=\sum_{n=1}^{\infty} \frac{l}{\boldsymbol{n} \pi a} \int_{0}^{t} f_{n}(\tau ) \sin \frac{n \pi a(t-\tau)}{l} d \tau \sin \frac{n \pi}{l} \boldsymbol{x}v(x,t)=n=1n πal0tfn( t )sinlnpa ( t τ )dτsinlx
        Matlab Solving Second Order Ordinary Differential Equations
syms V n a L 
S=dsolve(`D2V+(n*pi*a/L)^2*V=5`,`V(0)=0,DV(0)=0`,`t`)
pretty(simple(S))

heat equation

{ ∂ u ∂ t = a 2 ∂ 2 u ∂ x 2 + sin ⁡ ω t 0 < x < l , t > 0 ∂ u ∂ x ∣ x = 0 = ∂ u ∂ x ∣ x = l = 0 u ∣ t = 0 = 0 \left\{\begin{array}{l} \frac{\partial \boldsymbol{u}}{\partial \boldsymbol{t}}=\boldsymbol{a}^{2} \frac{\partial^{2} \boldsymbol{u}}{\partial \boldsymbol{x}^{2}}+\sin \omega \boldsymbol{t} \quad 0<\boldsymbol{x}<\boldsymbol{l}, \boldsymbol{t}>0 \\ \left.\frac{\partial \boldsymbol{u}}{\partial \boldsymbol{x}}\right|_{x=0}=\left.\frac{\partial \boldsymbol{u}}{\partial \boldsymbol{x}}\right|_{x=l}=0 \\ \left.\boldsymbol{u}\right|_{t=0}=0 \end{array}\right. t u=a2x22 and+sint _0<x<l,t>0x u x=0=x u x=l=0ut=0=0

  1. 齐次方程+齐次边界条件 { ∂ u ∂ t = a 2 ∂ 2 u ∂ x 2 ∂ u ∂ x ∣ x = 0 = ∂ u ∂ x ∣ x = l = 0 \left\{\begin{array}{l}\frac{\partial \boldsymbol{u}}{\partial \boldsymbol{t}}=\boldsymbol{a}^{2} \frac{\partial^{2} \boldsymbol{u}}{\partial \boldsymbol{x}^{2}} \\\left.\frac{\partial \boldsymbol{u}}{\partial \boldsymbol{x}}\right|_{x=0}=\left.\frac{\partial \boldsymbol{u}}{\partial \boldsymbol{x}}\right|_{x=l}=0\end{array}\right. { t u=a2x22 andx u x=0=x u x=l=0
    1. Eigenvalue problem { X ′ ′ ( x ) + λ X ( x ) = 0 X ′ ( 0 ) = X ′ ( l ) = 0 \left\{\begin{array}{l}\boldsymbol{X}^ {\prime \prime}(\boldsymbol{x})+\lambda \boldsymbol{X}(\boldsymbol{x})=0 \\\boldsymbol{X}^{\prime}(0)=\boldsymbol{X }^{\prime}(\boldsymbol{l})=0\end{array}\right.{ X′′(x)+λX(x)=0X (0)=X(l)=0
    2. Characteristic function X n ( x ) = A n cos ⁡ n π lx , n = 0 , 1 , 2 , . . . X_n(x)=A_n\cos\frac{n\pi}{l}x,n=0 ,1,2,...Xn(x)=Ancoslx,n=0 ,1 ,2 ,...
    3. Let inhomogeneous equation solution u ( x , t ) = ∑ n = 1 ∞ un ( t ) cos ⁡ n π lxu(x,t)=\sum_{n=1}^\infty u_n(t)\cos\ frac{n\pi}{l}xu(x,t)=n=1inn(t)coslx
  2. sin ⁡ w t \sin wt sinwt according to the sequence ofeigenfunctions { cos ⁡ n π lx } n = 0 ∞ \{\cos\frac{n\pi}{l}x\}_{n=0}^\infty{ coslx}n=0Expand into series form
    1. sin ⁡ wt = f 0 + ∑ n = 1 ∞ fn ( t ) cos ⁡ n π lx \sin wt=f_0+\sum_{n=1}^\infty f_n(t)\cos\frac{n\pi}{ l}xsinwt=f0+n=1fn(t)coslx
      1. f 0 ( t ) = 1 l ∫ 0 l sin ⁡ w t d x = sin ⁡ w t f_0(t)=\frac{1}{l}\int_0^l\sin wtdx=\sin wt f0(t)=l10lsinwtdx=sinwt
      2. f n ( t ) = 2 l ∫ 0 l sin ⁡ w t cos ⁡ n π l x d x = 0 f_n(t)=\frac{2}{l}\int_0^l\sin wt\cos\frac{n\pi}{l}xdx=0 fn(t)=l20lsinwtcoslx d x=0
  3. Substitute into the inhomogeneous equation to get
    1. insert image description here
    2. 得常微分方程问题 { u n ′ ( t ) + ( n π a l ) 2 u n ( t ) = f n ( t ) u n ( 0 ) = 0 \left\{\begin{array}{l}u_{n}^{\prime}(t)+\left(\frac{n \pi a}{l}\right)^{2} u_{n}(t)=f_{n}(t) \\u_{n}(0)=0\end{array}\right. { inn(t)+(lnπa)2inn(t)=fn(t)inn( 0 )=0
      1. n=0 n=0n=0 { u 0 ′ ( t ) = sin ⁡ w t u 0 ( 0 ) = 0 \left\{\begin{array}{l}\boldsymbol{u}_{0}^{\prime}(\boldsymbol{t})=\sin \boldsymbol{w} \boldsymbol{t} \\\boldsymbol{u}_{0}(0)=0\end{array}\right. { in0(t)=sinwtin0( 0 )=0
        1. u 0 ( t ) = − 1 w cos ⁡ w t + C u 0 ( 0 ) = 0 } ⇒ u 0 ( t ) = 1 w ( 1 − cos ⁡ w t ) \left.\begin{array}{c}u_{0}(t)=-\frac{1}{w} \cos w t+C \\u_{0}(0)=0\end{array}\right\} \Rightarrow u_{0}(t)=\frac{1}{w}(1-\cos w t) in0(t)=in1coswt+Cin0( 0 )=0}in0(t)=in1( 1coswt)
      2. n ≠ 0 n\neq 0n=0 { u n ′ ( t ) + ( n π a l ) 2 u n ( t ) = 0 u n ( 0 ) = 0 \left\{\begin{array}{l}u_{n}^{\prime}(t)+\left(\frac{n \pi a}{l}\right)^{2} u_{n}(t)=0 \\u_{n}(0)=0\end{array}\right. { inn(t)+(lnπa)2inn(t)=0inn( 0 )=0
        1. u n ( t ) = C e − a 2 n 2 π 2 l 2 t u n ( 0 ) = 0 } ⇒ u n ( t ) ≡ 0 \left.\begin{array}{l}u_{n}(t)=C e^{-a^{2} \frac{n^{2} \pi^{2}}{l^{2}} t} \\u_{n}(0)=0\end{array}\right\} \Rightarrow u_{n}(t) \equiv 0 inn(t)=This _a2l2n2 p.m2tinn( 0 )=0}inn(t)0
    3. u ( x , t ) = ∑ n = 0 ∞ u n ( t ) cos ⁡ n π l x u(x,t)=\sum_{n=0}^\infty u_n(t)\cos\frac{n\pi}{l}x u(x,t)=n=0inn(t)coslx

2.5 Treatment of inhomogeneous boundary conditions

2.4波方程 u ( x , t ) = v ( x , t ) + w ( x , t ) u(x,t)=v(x,t)+w(x,t) u(x,t)=v(x,t)+w(x,t)

  1. v at the boundary satisfies v ( o , t ) = 0 , v ( l , t ) = 0 v(o,t)=0,v(l,t)=0v ( o ,t)=0 ,v(l,t)=0 then w satisfiesw ( 0 , t ) = u 1 ( t ) , w ( l , t ) = u 2 ( t ) w(0,t)=u_1(t),w(l,t)= u_2(t)in ( 0 ,t)=in1(t),w(l,t)=in2(t)
  2. w形式 w ( x , t ) = A ( t ) x + B ( t ) w(x,t)=A(t)x+B(t) w(x,t)=A(t)x+B(t)
    1. 满足 { w ( x , t ) = A ( t ) x + B ( t ) w ( 0 , t ) = u 1 ( t ) , w ( l , t ) = u 2 ( t ) \left\{\begin{array}{l}w(x, t)=A(t) x+B(t) \\w(0, t)=u_{1}(t), w(l, t)=u_{2}(t)\end{array}\right. { w(x,t)=A(t)x+B(t)in ( 0 ,t)=in1(t),w(l,t)=in2(t)
    2. 解得 { A ( t ) = u 2 ( t ) − u 1 ( t ) l B ( t ) = u 1 ( t ) \left\{\begin{array}{l}A(t)=\frac{u_2(t)-u_1(t)}{l} \\B(t)=u_1(t)\end{array}\right. { A(t)=lin2(t)u1(t)B(t)=in1(t)
    3. ∴ w ( x , t ) = u 2 ( t ) − u 1 ( t ) l x + u 1 ( t ) \therefore w(x,t)=\frac{u_2(t)-u_1(t)}{l}x+u_1(t) w(x,t)=lin2(t)u1(t)x+in1(t)
  3. ininsert image description here
    1. v ( x , t ) v(x,t) v(x,t)满足 { ∂ 2 v ∂ t 2 = a 2 ∂ 2 v ∂ x 2 + f 1 ( x , t ) v ∣ x = 0 = 0 , v ∣ x = l = 0 v ∣ t = 0 = ϕ 1 ( x ) , ∂ v ∂ t ∣ t = 0 = ψ 1 ( x ) \left\{\begin{array}{l}\frac{\partial^{2} \boldsymbol{v}}{\partial \boldsymbol{t}^{2}}=\boldsymbol{a}^{2} \frac{\partial^{2} \boldsymbol{v}}{\partial \boldsymbol{x}^{2}}+\boldsymbol{f}_{1}(\boldsymbol{x}, \boldsymbol{t}) \\\left.\boldsymbol{v}\right|_{x=0}=0,\left.\quad \boldsymbol{v}\right|_{x=l}=0 \\\left.\boldsymbol{v}\right|_{t=0}=\phi_{1}(\boldsymbol{x}),\left. \frac{\partial \boldsymbol{v}}{\partial \boldsymbol{t}}\right|_{t=0}=\psi_{1}(\boldsymbol{x})\end{array}\right. t22 v=a2x22 v+f1(x,t)vx=0=0 ,vx=l=0vt=0=ϕ1(x),t v t=0=p1(x)in f 1 ( x , t ) = f ( x , t ) − u 2 ′ ′ ( t ) − u 1 ′ ′ ( t ) l x − u 1 ′ ′ ( t ) ϕ 1 ( x ) = ϕ ( x ) − u 1 ( 0 ) − u 2 ( 0 ) − u 1 ( 0 ) l x ψ 1 ( x ) = ψ ( x ) − u 1 ′ ( 0 ) − u 2 ′ ( 0 ) − u 1 ′ ( 0 ) l x \begin{array}{l} f_{1}(\boldsymbol{x}, \boldsymbol{t})=\boldsymbol{f}(\boldsymbol{x}, \boldsymbol{t})-\frac{\boldsymbol{u}_{2}^{\prime \prime}(\boldsymbol{t})-\boldsymbol{u}_{1}^{\prime \prime}(\boldsymbol{t})}{\boldsymbol{l}} \boldsymbol{x}-\boldsymbol{u}_{1}^{\prime \prime}(\boldsymbol{t}) \\ \phi_{1}(\boldsymbol{x})=\phi(\boldsymbol{x})-\boldsymbol{u}_{1}(0)-\frac{\boldsymbol{u}_{2}(0)-\boldsymbol{u}_{1}(0)}{\boldsymbol{l}} \boldsymbol{x} \\ \psi_{1}(\boldsymbol{x})=\psi(\boldsymbol{x})-\boldsymbol{u}_{1}^{\prime}(0)-\frac{\boldsymbol{u}_{2}^{\prime}(0)-\boldsymbol{u}_{1}^{\prime}(0)}{\boldsymbol{l}} \boldsymbol{x} \end{array} f1(x,t)=f(x,t)lin2(t)u1(t)xin1(t)ϕ1(x)=ϕ ( x )in1( 0 )lin2( 0 ) u1( 0 )xp1(x)=ψ ( x )in1( 0 )lin2( 0 ) u1( 0 )x

insert image description here

Guess you like

Origin blog.csdn.net/weixin_46143152/article/details/126457253