python -- fully automatic Lianliankan

some bullshit written on the front

My roommate has been playing for a week and still hasn't cleared the level, it's really a dish.

I really can't read it, so I wrote a script code directly in python, one game a minute.

It's fast, it's easy to be scolded for playing online, hehe~

Opposite netizens:
insert image description here

code directly

module import

import cv2
import numpy as np
import win32api
import win32gui
import win32con
from PIL import ImageGrab
import time
import random

The form title is used to position the game form

WINDOW_TITLE = "连连看"

The time interval is randomly generated [MIN,MAX]

TIME_INTERVAL_MAX = 0.06
TIME_INTERVAL_MIN = 0.1

The x offset of the game area from the vertex

MARGIN_LEFT = 10

The y offset of the game area from the vertex

MARGIN_HEIGHT = 180

The number of horizontal blocks

H_NUM = 19

number of vertical blocks

V_NUM = 11

block width

POINT_WIDTH = 31

block height

POINT_HEIGHT = 35

empty image number

EMPTY_ID = 0

The upper left and lower right coordinates when slicing:

SUB_LT_X = 8
SUB_LT_Y = 8
SUB_RB_X = 27
SUB_RB_Y = 27

The maximum number of eliminations in the game

MAX_ROUND = 200

Get the coordinate position of the form

def getGameWindow():
    # FindWindow(lpClassName=None, lpWindowName=None)  窗口类名 窗口标题名
    window = win32gui.FindWindow(None, WINDOW_TITLE)

    # 没有定位到游戏窗体
    while not window:
        print('Failed to locate the game window , reposition the game window after 10 seconds...')
        time.sleep(10)
        window = win32gui.FindWindow(None, WINDOW_TITLE)

    # 定位到游戏窗体
    # 置顶游戏窗口
    win32gui.SetForegroundWindow(window)
    pos = win32gui.GetWindowRect(window)
    print("Game windows at " + str(pos))
    return (pos[0], pos[1])

take screenshot

def getScreenImage():
    print('Shot screen...')
    # 获取屏幕截图 Image类型对象
    scim = ImageGrab.grab()
    scim.save('screen.png')
    # 用opencv读取屏幕截图
    # 获取ndarray
    return cv2.imread("screen.png")

Distinguish pictures from screenshots and process them into maps

def getAllSquare(screen_image, game_pos):
    print('Processing pictures...')
    # 通过游戏窗体定位
    # 加上偏移量获取游戏区域
    game_x = game_pos[0] + MARGIN_LEFT
    game_y = game_pos[1] + MARGIN_HEIGHT

    # 从游戏区域左上开始
    # 把图像按照具体大小切割成相同的小块
    # 切割标准是按照小块的横纵坐标
    all_square = []
    for x in range(0, H_NUM):
        for y in range(0, V_NUM):
            # ndarray的切片方法 : [纵坐标起始位置:纵坐标结束为止,横坐标起始位置:横坐标结束位置]
            square = screen_image[game_y + y * POINT_HEIGHT:game_y + (y + 1) * POINT_HEIGHT,
                     game_x + x * POINT_WIDTH:game_x + (x + 1) * POINT_WIDTH]
            all_square.append(square)

    # 因为有些图片的边缘会造成干扰,所以统一把图片往内缩小一圈
    # 对所有的方块进行处理 ,去掉边缘一圈后返回
    finalresult = []
    for square in all_square:
        s = square[SUB_LT_Y:SUB_RB_Y, SUB_LT_X:SUB_RB_X]
        finalresult.append(s)
    return finalresult

Determine whether there is the same graphic in the list, and
return to determine the id of the image,
otherwise return -1

def isImageExist(img, img_list):
    i = 0
    for existed_img in img_list:
        # 两个图片进行比较 返回的是两个图片的标准差
        b = np.subtract(existed_img, img)
        # 若标准差全为0 即两张图片没有区别
        if not np.any(b):
            return i
        i = i + 1
    return -1

Get all block types

def getAllSquareTypes(all_square):
    print("Init pictures types...")
    types = []
    # number列表用来记录每个id的出现次数
    number = []
    # 当前出现次数最多的方块
    # 这里我们默认出现最多的方块应该是空白块
    nowid = 0;
    for square in all_square:
        nid = isImageExist(square, types)
        # 如果这个图像不存在则插入列表
        if nid == -1:
            types.append(square)
            number.append(1);
        else:
            # 若这个图像存在则给计数器 + 1
            number[nid] = number[nid] + 1
            if (number[nid] > number[nowid]):
                nowid = nid
    # 更新EMPTY_ID
    # 即判断在当前这张图中的空白块id
    global EMPTY_ID
    EMPTY_ID = nowid
    print('EMPTY_ID = ' + str(EMPTY_ID))
    return types

Convert the two-dimensional picture matrix to a two-dimensional digital matrix
. Note that because the above screenshots are sliced ​​with priority,
each row of the generated record two-dimensional matrix stores the number of each column in the game screen. In
other words, it is record is actually a list after the center of the game screen is symmetrical

def getAllSquareRecord(all_square_list, types):
    print("Change map...")
    record = []
    line = []
    for square in all_square_list:
        num = 0
        for type in types:
            res = cv2.subtract(square, type)
            if not np.any(res):
                line.append(num)
                break
            num += 1
        # 每列的数量为V_NUM
        # 那么当当前的line列表中存在V_NUM个方块时我们认为本列处理完毕
        if len(line) == V_NUM:
            print(line);
            record.append(line)
            line = []
    return record

Determine whether the given two images can be eliminated

def canConnect(x1, y1, x2, y2, r):
    result = r[:]

    # 如果两个图像中有一个为0 直接返回False
    if result[x1][y1] == EMPTY_ID or result[x2][y2] == EMPTY_ID:
        return False
    if x1 == x2 and y1 == y2:
        return False
    if result[x1][y1] != result[x2][y2]:
        return False
    # 判断横向连通
    if horizontalCheck(x1, y1, x2, y2, result):
        return True
    # 判断纵向连通
    if verticalCheck(x1, y1, x2, y2, result):
        return True
    # 判断一个拐点可连通
    if turnOnceCheck(x1, y1, x2, y2, result):
        return True
    # 判断两个拐点可连通
    if turnTwiceCheck(x1, y1, x2, y2, result):
        return True
    # 不可联通返回False
    return False

Judging horizontal connectivity

def horizontalCheck(x1, y1, x2, y2, result):
    if x1 == x2 and y1 == y2:
        return False
    if x1 != x2:
        return False
    startY = min(y1, y2)
    endY = max(y1, y2)
    # 判断两个方块是否相邻
    if (endY - startY) == 1:
        return True
    # 判断两个方块通路上是否都是0,有一个不是,就说明不能联通,返回false
    for i in range(startY + 1, endY):
        if result[x1][i] != EMPTY_ID:
            return False
    return True

Judging vertical connectivity

def verticalCheck(x1, y1, x2, y2, result):
    if x1 == x2 and y1 == y2:
        return False

    if y1 != y2:
        return False
    startX = min(x1, x2)
    endX = max(x1, x2)
    # 判断两个方块是否相邻
    if (endX - startX) == 1:
        return True
    # 判断两方块儿通路上是否可连。
    for i in range(startX + 1, endX):
        if result[i][y1] != EMPTY_ID:
            return False
    return True

Determining that an inflection point can be connected

def turnOnceCheck(x1, y1, x2, y2, result):
    if x1 == x2 or y1 == y2:
        return False

    cx = x1
    cy = y2
    dx = x2
    dy = y1
    # 拐点为空,从第一个点到拐点并且从拐点到第二个点可通,则整条路可通。
    if result[cx][cy] == EMPTY_ID:
        if horizontalCheck(x1, y1, cx, cy, result) and verticalCheck(cx, cy, x2, y2, result):
            return True
    if result[dx][dy] == EMPTY_ID:
        if verticalCheck(x1, y1, dx, dy, result) and horizontalCheck(dx, dy, x2, y2, result):
            return True
    return False

Judging that two inflection points can be connected

def turnTwiceCheck(x1, y1, x2, y2, result):
    if x1 == x2 and y1 == y2:
        return False

    # 遍历整个数组找合适的拐点
    for i in range(0, len(result)):
        for j in range(0, len(result[1])):
            # 不为空不能作为拐点
            if result[i][j] != EMPTY_ID:
                continue
            # 不和被选方块在同一行列的不能作为拐点
            if i != x1 and i != x2 and j != y1 and j != y2:
                continue
            # 作为交点的方块不能作为拐点
            if (i == x1 and j == y2) or (i == x2 and j == y1):
                continue
            if turnOnceCheck(x1, y1, i, j, result) and (
                    horizontalCheck(i, j, x2, y2, result) or verticalCheck(i, j, x2, y2, result)):
                return True
            if turnOnceCheck(i, j, x2, y2, result) and (
                    horizontalCheck(x1, y1, i, j, result) or verticalCheck(x1, y1, i, j, result)):
                return True
    return False

automatic elimination

def autoRelease(result, game_x, game_y):
    # 遍历地图
    for i in range(0, len(result)):
        for j in range(0, len(result[0])):
            # 当前位置非空
            if result[i][j] != EMPTY_ID:
                # 再次遍历地图 寻找另一个满足条件的图片
                for m in range(0, len(result)):
                    for n in range(0, len(result[0])):
                        if result[m][n] != EMPTY_ID:
                            # 若可以执行消除
                            if canConnect(i, j, m, n, result):
                                # 消除的两个位置设置为空
                                result[i][j] = EMPTY_ID
                                result[m][n] = EMPTY_ID
                                print('Remove :' + str(i + 1) + ',' + str(j + 1) + ' and ' + str(m + 1) + ',' + str(
                                    n + 1))

                                # 计算当前两个位置的图片在游戏中应该存在的位置
                                x1 = game_x + j * POINT_WIDTH
                                y1 = game_y + i * POINT_HEIGHT
                                x2 = game_x + n * POINT_WIDTH
                                y2 = game_y + m * POINT_HEIGHT

                                # 模拟鼠标点击第一个图片所在的位置
                                win32api.SetCursorPos((x1 + 15, y1 + 18))
                                win32api.mouse_event(win32con.MOUSEEVENTF_LEFTDOWN, x1 + 15, y1 + 18, 0, 0)
                                win32api.mouse_event(win32con.MOUSEEVENTF_LEFTUP, x1 + 15, y1 + 18, 0, 0)

                                # 等待随机时间 ,防止检测
                                time.sleep(random.uniform(TIME_INTERVAL_MIN, TIME_INTERVAL_MAX))

                                # 模拟鼠标点击第二个图片所在的位置
                                win32api.SetCursorPos((x2 + 15, y2 + 18))
                                win32api.mouse_event(win32con.MOUSEEVENTF_LEFTDOWN, x2 + 15, y2 + 18, 0, 0)
                                win32api.mouse_event(win32con.MOUSEEVENTF_LEFTUP, x2 + 15, y2 + 18, 0, 0)
                                time.sleep(random.uniform(TIME_INTERVAL_MIN, TIME_INTERVAL_MAX))
                                # 执行消除后返回True
                                return True
    return False

The screenshots can't show the effect, you can try it yourself~

all code

# -*- coding:utf-8 -*-
import cv2
import numpy as np
import win32api
import win32gui
import win32con
from PIL import ImageGrab
import time
import random

# 窗体标题  用于定位游戏窗体
WINDOW_TITLE = "连连看"
# 时间间隔随机生成 [MIN,MAX]
TIME_INTERVAL_MAX = 0.06
TIME_INTERVAL_MIN = 0.1
# 游戏区域距离顶点的x偏移
MARGIN_LEFT = 10
# 游戏区域距离顶点的y偏移
MARGIN_HEIGHT = 180
# 横向的方块数量
H_NUM = 19
# 纵向的方块数量
V_NUM = 11
# 方块宽度
POINT_WIDTH = 31
# 方块高度
POINT_HEIGHT = 35
# 空图像编号
EMPTY_ID = 0
# 切片处理时候的左上、右下坐标:
SUB_LT_X = 8
SUB_LT_Y = 8
SUB_RB_X = 27
SUB_RB_Y = 27
# 游戏的最多消除次数
MAX_ROUND = 200


def getGameWindow():
    # FindWindow(lpClassName=None, lpWindowName=None)  窗口类名 窗口标题名
    window = win32gui.FindWindow(None, WINDOW_TITLE)

    # 没有定位到游戏窗体
    while not window:
        print('Failed to locate the game window , reposition the game window after 10 seconds...')
        time.sleep(10)
        window = win32gui.FindWindow(None, WINDOW_TITLE)

    # 定位到游戏窗体
    # 置顶游戏窗口
    win32gui.SetForegroundWindow(window)
    pos = win32gui.GetWindowRect(window)
    print("Game windows at " + str(pos))
    return (pos[0], pos[1])

def getScreenImage():
    print('Shot screen...')
    # 获取屏幕截图 Image类型对象
    scim = ImageGrab.grab()
    scim.save('screen.png')
    # 用opencv读取屏幕截图
    # 获取ndarray
    return cv2.imread("screen.png")

def getAllSquare(screen_image, game_pos):
    print('Processing pictures...')
    # 通过游戏窗体定位
    # 加上偏移量获取游戏区域
    game_x = game_pos[0] + MARGIN_LEFT
    game_y = game_pos[1] + MARGIN_HEIGHT

    # 从游戏区域左上开始
    # 把图像按照具体大小切割成相同的小块
    # 切割标准是按照小块的横纵坐标
    all_square = []
    for x in range(0, H_NUM):
        for y in range(0, V_NUM):
            # ndarray的切片方法 : [纵坐标起始位置:纵坐标结束为止,横坐标起始位置:横坐标结束位置]
            square = screen_image[game_y + y * POINT_HEIGHT:game_y + (y + 1) * POINT_HEIGHT,
                     game_x + x * POINT_WIDTH:game_x + (x + 1) * POINT_WIDTH]
            all_square.append(square)

    # 因为有些图片的边缘会造成干扰,所以统一把图片往内缩小一圈
    # 对所有的方块进行处理 ,去掉边缘一圈后返回
    finalresult = []
    for square in all_square:
        s = square[SUB_LT_Y:SUB_RB_Y, SUB_LT_X:SUB_RB_X]
        finalresult.append(s)
    return finalresult


# 判断列表中是否存在相同图形
# 存在返回进行判断图片所在的id
# 否则返回-1
def isImageExist(img, img_list):
    i = 0
    for existed_img in img_list:
        # 两个图片进行比较 返回的是两个图片的标准差
        b = np.subtract(existed_img, img)
        # 若标准差全为0 即两张图片没有区别
        if not np.any(b):
            return i
        i = i + 1
    return -1

def getAllSquareTypes(all_square):
    print("Init pictures types...")
    types = []
    # number列表用来记录每个id的出现次数
    number = []
    # 当前出现次数最多的方块
    # 这里我们默认出现最多的方块应该是空白块
    nowid = 0;
    for square in all_square:
        nid = isImageExist(square, types)
        # 如果这个图像不存在则插入列表
        if nid == -1:
            types.append(square)
            number.append(1);
        else:
            # 若这个图像存在则给计数器 + 1
            number[nid] = number[nid] + 1
            if (number[nid] > number[nowid]):
                nowid = nid
    # 更新EMPTY_ID
    # 即判断在当前这张图中的空白块id
    global EMPTY_ID
    EMPTY_ID = nowid
    print('EMPTY_ID = ' + str(EMPTY_ID))
    return types


# 将二维图片矩阵转换为二维数字矩阵
# 注意因为在上面对截屏切片时是以列为优先切片的
# 所以生成的record二维矩阵每行存放的其实是游戏屏幕中每列的编号
# 换个说法就是record其实是游戏屏幕中心对称后的列表
def getAllSquareRecord(all_square_list, types):
    print("Change map...")
    record = []
    line = []
    for square in all_square_list:
        num = 0
        for type in types:
            res = cv2.subtract(square, type)
            if not np.any(res):
                line.append(num)
                break
            num += 1
        # 每列的数量为V_NUM
        # 那么当当前的line列表中存在V_NUM个方块时我们认为本列处理完毕
        if len(line) == V_NUM:
            print(line);
            record.append(line)
            line = []
    return record

def canConnect(x1, y1, x2, y2, r):
    result = r[:]

    # 如果两个图像中有一个为0 直接返回False
    if result[x1][y1] == EMPTY_ID or result[x2][y2] == EMPTY_ID:
        return False
    if x1 == x2 and y1 == y2:
        return False
    if result[x1][y1] != result[x2][y2]:
        return False
    # 判断横向连通
    if horizontalCheck(x1, y1, x2, y2, result):
        return True
    # 判断纵向连通
    if verticalCheck(x1, y1, x2, y2, result):
        return True
    # 判断一个拐点可连通
    if turnOnceCheck(x1, y1, x2, y2, result):
        return True
    # 判断两个拐点可连通
    if turnTwiceCheck(x1, y1, x2, y2, result):
        return True
    # 不可联通返回False
    return False

def horizontalCheck(x1, y1, x2, y2, result):
    if x1 == x2 and y1 == y2:
        return False
    if x1 != x2:
        return False
    startY = min(y1, y2)
    endY = max(y1, y2)
    # 判断两个方块是否相邻
    if (endY - startY) == 1:
        return True
    # 判断两个方块通路上是否都是0,有一个不是,就说明不能联通,返回false
    for i in range(startY + 1, endY):
        if result[x1][i] != EMPTY_ID:
            return False
    return True

def verticalCheck(x1, y1, x2, y2, result):
    if x1 == x2 and y1 == y2:
        return False

    if y1 != y2:
        return False
    startX = min(x1, x2)
    endX = max(x1, x2)
    # 判断两个方块是否相邻
    if (endX - startX) == 1:
        return True
    # 判断两方块儿通路上是否可连。
    for i in range(startX + 1, endX):
        if result[i][y1] != EMPTY_ID:
            return False
    return True


def turnOnceCheck(x1, y1, x2, y2, result):
    if x1 == x2 or y1 == y2:
        return False

    cx = x1
    cy = y2
    dx = x2
    dy = y1
    # 拐点为空,从第一个点到拐点并且从拐点到第二个点可通,则整条路可通。
    if result[cx][cy] == EMPTY_ID:
        if horizontalCheck(x1, y1, cx, cy, result) and verticalCheck(cx, cy, x2, y2, result):
            return True
    if result[dx][dy] == EMPTY_ID:
        if verticalCheck(x1, y1, dx, dy, result) and horizontalCheck(dx, dy, x2, y2, result):
            return True
    return False


def turnTwiceCheck(x1, y1, x2, y2, result):
    if x1 == x2 and y1 == y2:
        return False

    # 遍历整个数组找合适的拐点
    for i in range(0, len(result)):
        for j in range(0, len(result[1])):
            # 不为空不能作为拐点
            if result[i][j] != EMPTY_ID:
                continue
            # 不和被选方块在同一行列的不能作为拐点
            if i != x1 and i != x2 and j != y1 and j != y2:
                continue
            # 作为交点的方块不能作为拐点
            if (i == x1 and j == y2) or (i == x2 and j == y1):
                continue
            if turnOnceCheck(x1, y1, i, j, result) and (
                    horizontalCheck(i, j, x2, y2, result) or verticalCheck(i, j, x2, y2, result)):
                return True
            if turnOnceCheck(i, j, x2, y2, result) and (
                    horizontalCheck(x1, y1, i, j, result) or verticalCheck(x1, y1, i, j, result)):
                return True
    return False


def autoRelease(result, game_x, game_y):
    # 遍历地图
    for i in range(0, len(result)):
        for j in range(0, len(result[0])):
            # 当前位置非空
            if result[i][j] != EMPTY_ID:
                # 再次遍历地图 寻找另一个满足条件的图片
                for m in range(0, len(result)):
                    for n in range(0, len(result[0])):
                        if result[m][n] != EMPTY_ID:
                            # 若可以执行消除
                            if canConnect(i, j, m, n, result):
                                # 消除的两个位置设置为空
                                result[i][j] = EMPTY_ID
                                result[m][n] = EMPTY_ID
                                print('Remove :' + str(i + 1) + ',' + str(j + 1) + ' and ' + str(m + 1) + ',' + str(
                                    n + 1))

                                # 计算当前两个位置的图片在游戏中应该存在的位置
                                x1 = game_x + j * POINT_WIDTH
                                y1 = game_y + i * POINT_HEIGHT
                                x2 = game_x + n * POINT_WIDTH
                                y2 = game_y + m * POINT_HEIGHT

                                # 模拟鼠标点击第一个图片所在的位置
                                win32api.SetCursorPos((x1 + 15, y1 + 18))
                                win32api.mouse_event(win32con.MOUSEEVENTF_LEFTDOWN, x1 + 15, y1 + 18, 0, 0)
                                win32api.mouse_event(win32con.MOUSEEVENTF_LEFTUP, x1 + 15, y1 + 18, 0, 0)

                                # 等待随机时间 ,防止检测
                                time.sleep(random.uniform(TIME_INTERVAL_MIN, TIME_INTERVAL_MAX))

                                # 模拟鼠标点击第二个图片所在的位置
                                win32api.SetCursorPos((x2 + 15, y2 + 18))
                                win32api.mouse_event(win32con.MOUSEEVENTF_LEFTDOWN, x2 + 15, y2 + 18, 0, 0)
                                win32api.mouse_event(win32con.MOUSEEVENTF_LEFTUP, x2 + 15, y2 + 18, 0, 0)
                                time.sleep(random.uniform(TIME_INTERVAL_MIN, TIME_INTERVAL_MAX))
                                # 执行消除后返回True
                                return True
    return False


def autoRemove(squares, game_pos):
    game_x = game_pos[0] + MARGIN_LEFT
    game_y = game_pos[1] + MARGIN_HEIGHT
    # 重复一次消除直到到达最多消除次数
    while True:
        if not autoRelease(squares, game_x, game_y):
            # 当不再有可消除的方块时结束 , 返回消除数量
            return


if __name__ == '__main__':
    random.seed()
    # i. 定位游戏窗体
    game_pos = getGameWindow()
    time.sleep(1)
    # ii. 获取屏幕截图
    screen_image = getScreenImage()
    # iii. 对截图切片,形成一张二维地图
    all_square_list = getAllSquare(screen_image, game_pos)
    # iv. 获取所有类型的图形,并编号
    types = getAllSquareTypes(all_square_list)
    # v. 讲获取的图片地图转换成数字矩阵
    result = np.transpose(getAllSquareRecord(all_square_list, types))
    # vi. 执行消除 , 并输出消除数量
    print('The total elimination amount is ' + str(autoRemove(result, game_pos)))

nothing~

Guess you like

Origin blog.csdn.net/m0_67575344/article/details/124048821