Semi-supervised learning practice-mixed training with labeled data and pseudo-labeled data

1. Background

      When there is less labeled data and a lot of unlabeled data, and the labeling cost is high, semi-supervised learning training can be considered. First, use pseudo-labeling technology to pseudo-label unlabeled pictures, and then use labeled data and pseudo-labeled data to mix the training model. It is worth noting that, to ensure that each mini-batch contains real tags and pseudo tags, this article will take you to implement it in code.

2. Implementation methods and steps

       First look at the pseudo-label technology, refer to here , as shown in the following figure:

3. Code implementation

      The first is to generate pseudo-labels, which is relatively simple for classification and target detection, so I won't go into details here.

      The following is realized: how to ensure that real labels and pseudo labels exist at the same time in each mini-batch, and to control their ratio, take classification as an example to illustrate.

       The first step is to load the revised data, as follows:

import os
import torch
from torch.utils import data
import numpy as np
from torchvision import transforms as T
import torchvision
import cv2
import sys
import random
from PIL import Image
from data_augment import gussian_blur, random_crop

class Dataset(data.Dataset):
    def __init__(self, img_list, img_list1, phase='train'):
        self.phase = phase

        # 标注的标签
        with open(img_list, 'r') as fd:
            imgs = fd.readlines()
        imgs = [img.rstrip("\n") for img in imgs]
        random.shuffle(imgs)
        self.imgs = imgs

        # 伪标签(模拟的)
        with open(img_list1, 'r') as fd:
            fake_imgs = fd.readlines()
        fake_imgs = [img.rstrip("\n") for img in fake_imgs]
        random.shuffle(fake_imgs)
        self.fake_imgs = fake_imgs


        normalize = T.Normalize(mean=[0.5, 0.5, 0.5],
                                 std=[0.5, 0.5, 0.5])

        if self.phase == 'train':
            self.transforms = T.Compose([
                T.RandomHorizontalFlip(),
                T.ToTensor(),
                normalize
            ])
        else:
            self.transforms = T.Compose([
                T.ToTensor(),
                normalize
            ])

    def __getitem__(self, index):
        sample = self.imgs[index]
        splits = sample.split()
        img_path = splits[0]

        # data augment
        data = cv2.imread(img_path)
        data = random_crop(data, 0.2)
        data = gussian_blur(data, 0.2)

        data = cv2.cvtColor(data, cv2.COLOR_BGR2RGB)
        data = Image.fromarray(data)
        
        data = data.resize((224, 224))
        data = self.transforms(data)
        label = np.int32(splits[1])

        # 取伪数据和伪标签
        fake_datas, fake_labels = [], []
        for i in range(2):
            fake_sample = self.fake_imgs[(index+i)%len(self.fake_imgs)]
            fake_splits = fake_sample.split()
            fake_img_path = fake_splits[0]

            fake_data = cv2.imread(fake_img_path)
            fake_data = cv2.cvtColor(fake_data, cv2.COLOR_BGR2RGB)
            fake_data = Image.fromarray(fake_data)
            fake_data = fake_data.resize((224, 224))
            fake_data = self.transforms(fake_data)

            fake_label = np.int32(fake_splits[1])

            fake_datas.append(fake_data.float())
            fake_labels.append(fake_label)

        return data.float(), label, fake_datas, fake_labels

    def __len__(self):
        return len(self.imgs)

       The second step, the realization in the main training program, is as follows:

def train(epoch, net, trainloader, optimizer, criterion):
    print('\nEpoch: %d' % epoch)
    net.train()
    train_loss = 0
    correct = 0
    total = 0
    batch_id = 0
    for (inputs, targets, fake_inputs, fake_targets) in tqdm(trainloader):
    
        # 将真标签和伪标签融合
        fake_inputs.append(inputs)
        fake_targets.append(targets)

        inputs = torch.cat(fake_inputs, dim=0)
        targets = torch.cat(fake_targets, dim=0)

        inputs, targets = inputs.to(device), targets.to(device)
        optimizer.zero_grad()
        outputs = net(inputs)
        loss = criterion(outputs, targets.long())
        loss.backward()
        optimizer.step()

        train_loss += loss.item()
        _, predicted = outputs.max(1)
        total += targets.size(0)
        correct += predicted.eq(targets.long()).sum().item()

        iters = epoch * len(trainloader) + batch_id
        if iters % 10 == 0:
            acc = predicted.eq(targets.long()).sum().item()*1.0/targets.shape[0]
            los = loss*1.0/targets.shape[0]
            #tensor_board.visual_loss("train_loss", los, iters)
            #tensor_board.visual_acc("train_acc", acc, iters)
        batch_id += 1

 It's that simple, please refer to my other blog for the theoretical part

Related: https://blog.csdn.net/p_lart/article/details/100128353

Guess you like

Origin blog.csdn.net/Guo_Python/article/details/107980688