反復関数

序文

典型的な例の分析

例1 [2018鳳翔高校芸術数学シミュレーションスプリント10]質問既知の8組\(F(X)= \開始{ケース} 1、およびX \における[0,1] \\、X 3、およびX \ notin [ 0,1] \ケース終了{} \) ような\(F(F(X) )= 1 \) 確立された\(X \)の範囲である[A]

$ A [0,1] $する$ B。[0,1] \カップ\ {7 \} $する$ C。[0,1] \カップ[3,4] $する$ D [0,1] \カップ[3,4] \カップ\ {7 \} $

分析:タイトルセクション関数を解く方程式をすることができる属する(F(X)\)\全体として知られているとみなす\(X \) 元の式は、区分関数と等価です

前者の場合、\(0 \のLeq F(X)\のLeq 1 \)\(F(X)= 1 \。) 又は第二の場合、\(F(X)= -3 1 \)\(F(X)\ notin [0,1] \)

前記第一のように簡略化することができる(0 \のLeq F(X)\ 1当量1 \)\、次いで等価に変換X \開始{ケース}(\で\ [0,1] \\ F(X)= 1 \端{ケース} \)または\(\開始{ケース} X \ notin [0,1] \\ 0 \当量X-3 \当量1つの\端{ケース} \)

解決策はしている\(0 \当量X \当量 1 \) または\(3 \のLeq X \のLeq 4 \。)

第二は以下のように簡略化することができる\(F(X)= 4 \) 次いで等価に変換\(\開始{ケース} X \における[0,1] \\ 1 = 4 \端{ケース} \) または\(。\場合は[0,1] = 4 3-X \\ \ケース終了{} \ notin {X}を\開始)、を解く\(X = 7 \)

要約すると、\(X \)の範囲である\([0,1] \カップ[3,4] \カップ\ {7 \} \) 選択された\(D \)

例1 既知の機能\が(F(x)が\)で定義されている(R&LT \)\奇関数で、場合\(X <0 \)場合、\(F(X)=(Xの+。1)E ^ X \ )、次いで、いずれかの(R&LT \におけるM \)\、関数\(F(X)= \) \(F [F(X)] -のM \) [A]は最大でゼロです。

$ A.3 $ $ $ $ B.4 C.6 $ $ D.9の$

[方法1]:問題を解決するために関数を使用して合成画像、関数の関数用いて得られた第1のパリティ\(F(X)\)分析式は、

表題所与\(X <0 \)解析式場合、場合(X \> 0 \)場合、( - X <0 \)\、次に\(F(-x)=( - X + 1を)E ^ { - } X \)

そして関数\(F(X)\)奇関数であり、\(F(X)= - F(-x)= - ( - X + 1)E ^ { - }、X =(X-1)E ^ -X-} {\) および\(F(0)= 0 \)

したがって、分析関数のための式\(F(X)= \左\ {\開始{アレイ} {1} {(X + 1)E ^ X、X <0} \\ {0、X = 0} \\ {(X-1)E ^ { - x}は、x> 0} \端{アレイ} \右\)。

最初の研究では、誘導体の使用、続いて\(X <0 \)単調、\(F(X)=(X + 1)E ^ X \) 次いで、(X)= \(F」 (X + 2)をX ^ E \)

\(X \(中- \ inftyの、-2)\) 、関数\(F(X)\)単調減少、\((2,0)におけるX \ \) 関数\(F(X )\)単調増加、および\(F(0)= 1 \)

したがって、結合およびパリティ単調が行わ\(R&LTの\)以下のように関数の概略図です。

次の分析複合関数\(H(x)はF = [F(X)] \) 画像の。

場合(X = 0 \)\場合、\(F(0)= 0 \)場合、\(F(F(0))= 0 \)

場合((0,1)において、X \ \ \) 、内側関数\(F(X)\)単調増加、及び()-1,0(中F(X)\ \)\関数外部この時、内- (1,0)\()\単調に増分するので、\(F(F(X) )\) で\(X \で(0,1) \) は単調に増加します。

場合(X = 1 \)を\場合、\(F(1)= 0 \)、\ (F(F(1))= 0 \)

場合((1,2)において、X \ \ \) 、内側関数\(F(X)\)単調増加、および\((0で\ F(X)、Eは、^ { - 2})\) このとき、外側の関数\((0、E ^ { - 2})\) も単調に増加するので、(F(F(X)\ )\) で\(X \で(1,2) \) に単調増加、およびから関数値\(1 \)が徐々に増加\(F(F(2) )\) と\(F(F(2))<0 \)

場合\(X \(2、 + \ inftyの)\) 、内側関数\(F(X)\)単調減少、および\(F(X)\で (0、E ^ { - 2})\ 、アウターケース関数\((0、E ^ { - 2})\) 単調に増加するので、\(F(F(X) )\) で\(X \(2、で + \ inftyの) \)単調減少関数と値が徐々に近づいて\を( - 1 \)

次いで、奇関数示す対称特性を有する\(X <0 \)に示すように、全体的な画像のその部分を、

由图可知,函数\(y=f(f(x))\)\(y=m\)的交点最多有三个,故选\(A\)

  • 下述的解法2,最好先说明借助图像如何由\(x\)\(f(x)\),以及由\(f(x)\)\(x\);只要双向的对应理解透彻,下述的解法就好思考多了;

【法2】:由外向里,从函数值找自变量,首先利用函数的奇偶性求出函数\(f(x)\)的解析式;

题目给定了\(x<0\)时的解析式,则当\(x>0\)时,\(-x<0\),则\(f(-x)=(-x+1)e^{-x}\)

又函数\(f(x)\)为奇函数,则\(f(x)=-f(-x)=-(-x+1)e^{-x}=(x-1)e^{-x}\),又\(f(0)=0\)

故函数的解析式为\(f(x)=\left\{\begin{array}{l}{(x+1)e^x,x<0}\\{0,x=0}\\{(x-1)e^{-x},x>0}\end{array}\right.\)

接下来利用导数先研究\(x<0\)时的单调性,\(f(x)=(x+1)e^x\),则\(f'(x)=(x+2)e^x\)

\(x\in (-\infty,-2)\)时,函数\(f(x)\)单调递减,\(x\in (2,0)\)时,函数\(f(x)\)单调递增,又\(f(0)=1\)

故结合单调性和奇偶性,做出\(R\)上的函数示意图如下:

\(F(x)=0\),即\(f(f(x))=m\),由图可知,要使得函数\(y=f(f(x))\)\(y=m\)的图像有交点,则\(m\in (-1,1)\);接下来关于\(m\)的取值分类讨论如下:

\(m\in (0,e^{-2})\)时,如图所示,内函数\(f(x)=a,a\in (-1,0)\)\(f(x)=b,b\in (1,2)\)\(f(x)=c,c\in (2,+\infty)\)

\(f(x)=b\)\(f(x)=c\)时,不存在\(x\);注意应该是在\(y\)轴上找点\((0,b)\),然后过此点做\(x\)轴的平行线,显然和函数的图像没有交点;

\(f(x)=a, a\in (-1,0)\)时,此时和函数的图像最多有三个交点;

\(m\in (e^{-2},1)\)时,内函数\(f(x)=a,a\in (-1,0)\),此时\(f(x)\in (-1,0)\)时,函数\(y=a\)和函数\(y=f(x)\)图像最多有三个交点,

同理,当\(m\in (-e^{-2},0)\)\(m\in (-1,-e^{-2})\)时,仿上说明,同样最多有三个交点,故选\(A\)

例2 【2019届高三理科数学资料用题】【2018日照一模】已知函数\(f(x)=\left\{\begin{array}{l}{|lgx|,x>0}\\{2^{|x|},x\leq 0}\end{array}\right.\),则函数\(y=2f^2(x)\) \(-3f(x)\) \(+1\)的零点个数是______个。

分析:函数\(y=2f^2(x)-3f(x)+1\)的零点个数即方程\(2f^2(x)-3f(x)+1=0\)的根的个数,

故先求解方程\(2f^2(x)-3f(x)+1=0\),即\([2f(x)-1][f(x)-1]=0\)

解得\(f(x)=1\)\(f(x)=\cfrac{1}{2}\)

接下来原方程的根的个数转化为方程\(f(x)=1\)\(f(x)=\cfrac{1}{2}\)的根的个数,

故做出函数\(y=f(x)\)的图像和直线\(y=1\)\(y=\cfrac{1}{2}\)

由图像可以看出,其共有\(5\)个交点,故原函数的零点个数为\(5\)个。

例3 【2019届高三理科数学三轮模拟用题】函数\(f(x)=\left\{\begin{array}{l}{log_2x,x>0}\\{x^2+4x+1,x<0}\end{array}\right.\),若实数\(a\)满足\(f(f(a))=1\),则实数\(a\)的所有取值的和为___________。

法1:从数的角度入手思考,将内函数\(f(x)\)理解为整体,则\(f(f(a))=1\)等价于以下的两个方程组,

Ⅰ.\(\left\{\begin{array}{l}{f(a)>0}\\{log_2f(a)=1}\end{array}\right.\),或者Ⅱ.\(\left\{\begin{array}{l}{f(a)\leq 0}\\{[f(a)]^2+4[f(a)]+1=1}\end{array}\right.\)

解Ⅰ得到,\(f(a)=2\)①;解Ⅱ得到,\(f(a)=0\)②或者\(f(a)=-4\)③;

再次求解①得到,\(\left\{\begin{array}{l}{a>0}\\{log_2a=2}\end{array}\right.\),或\(\left\{\begin{array}{l}{a\leq 0}\\{a^2+4a+1=2}\end{array}\right.\)

解得\(a=4\)\(a=-2-\sqrt{5}\)

求解②得到,\(\left\{\begin{array}{l}{a>0}\\{log_2a=0}\end{array}\right.\),或\(\left\{\begin{array}{l}{a\leq 0}\\{a^2+4a+1=0}\end{array}\right.\)

解得\(a=1\)\(a=-2\pm \sqrt{3}\)

求解③得到,\(\left\{\begin{array}{l}{a>0}\\{log_2a=-4}\end{array}\right.\),或\(\left\{\begin{array}{l}{a\leq 0}\\{a^2+4a+1=-4}\end{array}\right.\)

解得\(a=\cfrac{1}{16}\)\(a\in \varnothing\)

故实数\(a\)的所有取值的和为\(4-2-\sqrt{5}+1-2-\sqrt{3}-2+\sqrt{3}+\cfrac{1}{16}=-\cfrac{15}{16}-\sqrt{5}\)

法2:从图像入手分析,待编辑。

例4 【2020届高三文科数学周末训练2用题】若函数\(f(x)=\left\{\begin{array}{l}{x+1,x\leqslant 0}\\{lnx,x>0,}\end{array}\right.\) 则函数\(y=f[f(x)]+1\)的零点的个数为______ 个。

分析:首先学习理解一个分段函数方程的模型;

模型 【求解分段函数方程】【2016第三次全国大联考第15题】已知\(f(x)\)是定义在R上的奇函数,且当\(x<0\)时,\(f(x)=2x-1\),若\(f(a)=3\),求实数\(a\)的值。

分析:先由奇偶性求得\(x>0\)时,\(f(x)=2x+1\)

即得到函数的解析式为\(f(x)=\begin{cases}2x-1&x<0\\0&x=0\\2x+1&x>0\end{cases}\),且已知\(f(a)=3\),求\(a\)的值,

等价转化为三个不等式组 \(\begin{cases}a<0\\2a-1=3\end{cases}\),或\(\begin{cases}a=0\\0=3\end{cases}\),或\(\begin{cases}a>0\\2a+1=3\end{cases}\)

解得\(a=1\)

学习理解透彻了上述模型后,我们开始求解本题目:

【法1】:从数的角度求解;令\(f(x)=t\),则函数的零点问题转化为方程\(f(t)=-1\)的解的个数问题;

即相当于已知\(f(x)=\left\{\begin{array}{l}{x+1,x\leqslant 0}\\{lnx,x>0,}\end{array}\right.\)\(f(t)=-1\),求\(t\)的值;

则上述分段函数方程等价于\(\left\{\begin{array}{l}{t\leqslant 0}\\{t+1=-1}\end{array}\right.\)\(\left\{\begin{array}{l}{t> 0}\\{lnt=-1}\end{array}\right.\)

解得\(t=-2\)或者\(t=\cfrac{1}{e}\),即\(f(x)=-2\)或者\(f(x)=\cfrac{1}{e}\),到此题目又可以转化为

已知\(f(x)=\left\{\begin{array}{l}{x+1,x\leqslant 0}\\{lnx,x>0,}\end{array}\right.\)\(f(x)=-2\),求\(x\)的值;可以仿上求解得到\(2\)\(x\)的值;

或已知\(f(x)=\left\{\begin{array}{l}{x+1,x\leqslant 0}\\{lnx,x>0,}\end{array}\right.\)\(f(x)=\cfrac{1}{e}\),求\(x\)的值;亦可以仿上求解得到\(2\)\(x\)的值;

故所求的零点的个数为\(4\)个。

【法2】:从形的角度求解;先做出分段函数图像如下:

先将函数的零点问题转化为方程\(f[f(x)]=-1\)的根的个数问题;作直线\(y=-1\)与函数\(y=f(x)\)图像有两个交点,其横坐标分别为\(x=-2\)\(x=\cfrac{1}{e}\)

然后在同样的图上,再分别作直线\(y=-2\)\(y=\cfrac{1}{e}\),可以看出,这两条直线分别和分段函数\(y=f(x)\)有两个交点,故共有四个交点。即所求的零点的个数为\(4\)个。

例11 设函数\(f(x)=\begin{cases}x^2+x,&x<0\\-x^2,&x\ge 0 \end{cases}\),若\(f(f(a))\leq 2\),则实数\(a\)的取值范围是_____.

法1:若能将\(f(a)\)理解成已知函数的\(x\)

则可以将\(f(f(a))\leq 2\)等价转化为以下的两个不等式组:

\(\begin{cases}&f(a)<0\\&f^2(a)+f(a)\leq 2 \end{cases}\)\(\begin{cases}&f(a)\ge0\\&-f^2(a)\leq 2 \end{cases}\)

分别解得:\(-2\leq f(a)<0\)\(f(a)\ge 0\),故\(f(a)\ge -2\)

到此问题转化为已知\(f(x)=\begin{cases}x^2+x,&x<0\\-x^2,&x\ge 0 \end{cases}\)\(f(a)\ge -2\)

求实数\(a\)的取值范围,这就容易多了。

再次转化为\(\begin{cases}&a<0\\&a^2+a\ge -2 \end{cases}\)\(\begin{cases}&a\ge0\\&-a^2\ge -2 \end{cases}\)

分别解得:\(a<0\)\(0\leq a\leq \sqrt{2}\),故实数\(a\)的取值范围为\((-\infty,+\sqrt{2}]\)

解后反思:本题经过两次抽丝剥茧般的处理,第一次的结果得到\(f(a)\ge -2\)

第二次的结果得到\(a\in (-\infty,+\sqrt{2}]\)

法2:图像法

自行做出函数图像,结合图像可知,

要使得\(f(f(a))\leq 2\),则必须\(f(a)\ge -2\)

这时就转化为分段函数不等式问题了。

\(f(a)\ge -2\)等价于以下两个不等式组:

\(\begin{cases}&a<0 \\&a^2+a\ge -2\end{cases}\)\(\begin{cases}&a\ge 0 \\&-a^2\ge -2\end{cases}\)

解得\(a<0\)\(0\leq a\leq \sqrt{2}\)

\(a\in(-\infty,\sqrt{2}]\)

例9 已知函数\(y=f(x)\)\(y=g(x)\)\([-2,2]\)上的图像如图所示,给出下列四个命题:

①方程\(f[g(x)]=0\)有且仅有\(6\)个根;②方程\(g[f(x)]=0\)有且仅有\(3\)个根;

③方程\(f[f(x)]=0\)有且仅有\(5\)个根;④方程\(g[g(x)]=0\)有且仅有\(4\)个根;

则正确的命题有 _______________。①③④

【法1】:从里向外分析,重新配图;得空整理;

对于命题①而言,复合函数为\(f[g(x)]\);为什么如下选择区间?理由1

\([-2,x_0]\)上,\(f[g(x)]\nearrow\)\(f[g(-2)]=f(-2)=-2\)\(f[g(x_0)]=f(-1)=1\),其中\(g(x_0)=-1\);

\([x_0,x_1]\)上,\(f[g(x)]\searrow\)\(f[g(x_1)]=f(0)=0\),其中\(g(x_1)=0\)

\([x_1,x_2]\)上,\(f[g(x)]\searrow\)\(f[g(x_2)]=f(1)=-1\),其中\(g(x_2)=1\)

\([x_2,-1]\)上,\(f[g(x)]\nearrow\)\(f[g(-1)]=f(2)=2\)

\([-1,0]\)上,\(f[g(x)]\searrow\)\(f[g(0)]=f(1)=-1\);图中未说明,假定\(g(0)=1\);

\([0,1]\)上,\(f[g(x)]\nearrow\)\(f[g(1)]=f(-0.3)=0.4\)\(g(1)=-0.3\)\(f(-0.3)=0.4\)为估算值;

\([1,x_3]\)上,\(f[g(x)]\nearrow\)\(f[g(x_3)]=f(-1)=1\),其中\(g(x_3)=-1\)

\([x_3,2]\)上,\(f[g(x)]\searrow\)\(f[g(2)]=f(-2)=-2\)

根据上述函数值,做出函数图像,由图像可知方程\(f[g(x)]=0\)有且仅有\(6\)个根;故①正确;

对于命题②而言,复合函数为\(g[f(x)]\)

\([-2,x_4]\)上,\(g[f(x)]\nearrow\)\(g[f(-2)]=g(-2)=-2\)\(g[f(x_4)]=g(-1)=2\),其中\(f(x_4)=-1\);

\([x_4,x_5]\)上,\(g[f(x)]\searrow\)\(g[f(x_5)]=g(0)=1\),其中\(f(x_5)=0\)

\([x_5,-1]\)上,\(g[f(x)]\searrow\)\(g[f(-1)]=g(1)=-0.3\)

\([-1,0]\)上,\(g[f(x)]\nearrow\)\(g[f(0)]=g(0)=1\)

\([0,1]\)上,\(g[f(x)]\nearrow\)\(g[f(1)]=g(-1)=2\)

\([1,x_6]\)上,\(g[f(x)]\searrow\)\(g[f(x_6)]=g(1)=0\),其中\(f(x_6)=1\)

\([x_6,2]\)上,\(f[g(x)]\searrow\)\(g[f(2)]=g(2)=-2\)

根据上述函数值,做出函数图像,由图像可知方程\(g[f(x)]=0\)有且仅有\(4\)个根;故②错误;

对于命题③而言,复合函数为\(f[f(x)]\)

\([-2,x_4]\)上,\(f[f(x)]\nearrow\)\(f[f(-2)]=f(-2)=-2\)\(f[f(x_4)]=f(-1)=1\),其中\(f(x_4)=-1\);

\([x_4,x_5]\)上,\(f[f(x)]\searrow\)\(f[f(x_5)]=f(0)=0\),其中\(f(x_5)=0\)

\([x_5,-1]\)上,\(f[f(x)]\searrow\)\(f[f(-1)]=f(1)=-1\)

\([-1,0]\)上,\(f[f(x)]\nearrow\)\(f[f(0)]=f(0)=0\)

\([0,1]\)上,\(f[f(x)]\nearrow\)\(f[f(1)]=f(-1)=1\)

\([1,x_6]\)上,\(f[f(x)]\searrow\)\(f[f(x_6)]=f(1)=-1\),其中\(f(x_6)=1\)

\([x_6,2]\)上,\(f[f(x)]\nearrow\)\(f[f(2)]=f(2)=2\)

根据上述函数值,做出函数图像,由图像可知方程\(f[f(x)]=0\)有且仅有\(5\)个根;故③正确;

对于命题④而言,复合函数为\(g[g(x)]\)

\([-2,x_0]\)上,\(g[g(x)]\nearrow\)\(g[g(-2)]=g(-2)=-2\)\(g[g(x_0)]=g(-1)=2\),其中\(g(x_0)=-1\);

\([x_0,x_1]\)上,\(g[g(x)]\searrow\)\(g[g(x_1)]=f(0)=0\),其中\(g(x_1)=0\)

\([x_1,x_2]\)上,\(g[g(x)]\searrow\)\(g[g(x_2)]=g(1)=-0.3\),其中\(g(x_2)=1\)

\([x_2,-1]\)上,\(g[g(x)]\searrow\)\(g[g(-1)]=g(2)=-2\)

\([-1,0]\)上,\(g[g(x)]\nearrow\)\(g[g(0)]=g(1)=0\)

\([0,1]\)上,\(g[g(x)]\nearrow\)\(g[g(1)]=g(0)=1\)

\([1,x_3]\)上,\(g[g(x)]\nearrow\)\(g[g(x_3)]=g(-1)=2\),其中\(g(x_3)=-1\)

\([x_3,2]\)上,\(g[g(x)]\searrow\)\(g[g(2)]=f(-2)=-2\)

根据上述函数值,做出函数图像,由图像可知方程\(g[g(x)]=0\)有且仅有\(4\)个根;故④正确;

综上所述,正确的命题有①③④。

法2:从外向里分析,由图像可知,\(-2\leqslant g(x)\leqslant 2\)\(-2\leqslant f(x)\leqslant 2\)

对于命题①而言,由于满足方程\(f[g(x)]=0\)\(g(x)\)\(3\)个不同值,由于每个值\(g(x)\)又对应了\(2\)\(x\)值,故满足\(f[g(x)]=0\)\(x\)值有\(6\)个,即方程\(f[g(x)]=0\)有且仅有\(6\)个根,故命题①正确;

[图像使用方法说明]:由\(y=f(x)\)的图像可以看出,使得\(f(x)=0\)的三个零点值分别为\(x_1=-1.6\)\(x_2=0\)\(x_3=1.6\)[估算],

在函数\(y=g(x)\)的图像中,分别做直线\(g(x)=-1.6\)\(g(x)=0\)\(g(x)=1.6\),每一条直线和函数\(y=g(x)\)都有\(2\)个交点,故共有\(6\)个交点。

对于命题②而言,由于满足方程\(g[f(x)]=0\)\(f(x)\)\(2\)个不同值,从图中可知,每一个值\(f(x)\),一个\(f(x)\)的值在\((-2,-1)\)上,另一个\(f(x)\)的值在\((0,1)\)上,当\(f(x)\)的值在\((-2,-1)\)上时,原方程有一个解;当\(f(x)\)的值在\((0,1)\)上时,原方程有\(3\)个解,故满足\(g[f(x)]=0\)\(x\)值有\(4\)个,即方程\(g[f(x)]=0\)有且仅有\(4\)个根,故命题②不正确;

对于命题③而言,由于满足方程\(f[f(x)]=0\)\(f(x)\)\(3\)个不同值,从图中可知,一个\(f(x)\)的值在\((-2,-1)\)上,一个\(f(x)\)的值为\(0\),另一个\(f(x)\)的值在\((1,2)\)上;当\(f(x)=0\)对应了\(3\)个不同的\(x\)值,当\(f(x)\)\((-2,-1)\)上时,只对应一个\(x\)值;当\(f(x)\)的值在\((1,2)\)上时,也只对应一个\(x\)的值,故满足\(f[f(x)]=0\)\(x\)值有\(5\)个,即方程\(f[f(x)]=0\)有且仅有\(5\)个根,故命题③正确;

对于命题④而言,由于满足方程\(g[g(x)]=0\)\(g(x)\)\(2\)个不同值,从图中可知,每个\(g(x)\)的值对应\(2\)个不同的\(x\)值,故满足\(g[g(x)]=0\)\(x\)值有\(4\)个,即方程\(g[g(x)]=0\)有且仅有\(4\)个根,故命题④正确;

综上所述,正确的命题有①③④。

  • 上次编辑时间:2019-07-21

  1. 当我们先选择函数\(g(x)\)的区间为\([-2,-1]\)时,此时虽然能保证内函数\(g(x)\)单调递增,但是此时内函数的值域\(g(x)\in [-2,2]\),其投射到外函数\(f(x)\)上时,就放置到了外函数\(f(x)\)的定义域\([-2,2]\)内,此时外函数的单调性不唯一,说明我们一开始选取的内函数的研究区间\([-2,-1]\)有些大了,所以需要压缩;一直压缩到\([-2,x_0]\),其中\(g(x_0)=-1\),这时候内函数的值域\(g(x)\in [-2,-1]\),刚好投射到外函数的单调递增区间上,说明此时的区间选取是恰当合理的,其他的区间选取与此同理同法;

おすすめ

転載: www.cnblogs.com/wanghai0666/p/10784510.html