オーバーサンプリングアルゴリズムの打ち

強打(合成少数オーバーサンプリング法)、合成少数オーバーサンプリング。特定の(情報があまりにも特別なモデルを研究することであっても、オーバーフィッティングモデルの問題に非常になりやすい、サンプルコピーの少数クラスのサンプルを高めるために、単純な戦略を引き継いによるランダムなサンプルに改善スキームを介して、ランダムサンプリングアルゴリズムに基づいています次のように)と(一般)一般化されない、アルゴリズムの基本的な考え方は、特に図アルゴリズム手順に示すように、少数のクラスのサンプルは、分析及び合成少数サンプル新たなサンプルに応じて設定されたデータに付加される打ちすることです。

  • (1)少数xの各試料について、少数クラスサンプルがk個の近隣を取得するために、すべてのサンプルから設定するための標準として計算ユークリッド距離。 
  • (2)試料のインバランス割合は、ネイバーは、Oから選択されると仮定すると、k近傍からサンプルx、いくつかのランダムに選択されたサンプルの少数のそれぞれについて、サンプリングレート比Nを決定するためにサンプルを提供しました。 
  • (3)ランダムに新しいサンプルの式O(新しい)= O +ランド(0,1)*(XO)の構成によれば、元のサンプルと、それぞれ、O、各隣接のために選択。

 

または:

 

 

以下に示すように我々は、打っアルゴリズムは、n最初のいくつかのクラスの非常に単純なサンプルがランダムに選択されたあると思いました

 

 

小さなサンプルクラスの初期展開をご覧ください

以下に示すように、次に、m個のサンプルの最も近い小さなクラスを見つけます。

 

 

M個のサンプルのその後必要に応じて、最も近いクラス以下の任意の点、

 

 

この時点で、必要に応じて2、これは新しいデータサンプルです

# -*- coding: utf-8 -*-
import numpy as np
import pandas as pd
from sklearn.preprocessing import StandardScaler
from numpy import *
import matplotlib.pyplot as plt
 
#读数据
data = pd.read_table('supermarket_second_man_clothes_train.txt', low_memory=False)

#简单的预处理
test_date = pd.concat([data['label'], data.iloc[:, 7:10]], axis=1)
test_date = test_date.dropna(how='any')

结果:

test_date.head()
Out[1]: 
   label  max_date_diff  max_pay  cnt_time
0      0           23.0  43068.0        15
1      0           10.0   1899.0         2
2      0          146.0   3299.0        21
3      0           30.0  31959.0        35
4      0            3.0  24165.0        98
test_date['label'][test_date['label']==0].count()/test_date['label'][test_date['label']==1].count()
Out[2]: 67

label是样本类别判别标签,0:1=67:1,需要对label=1的数据进行扩充

# 筛选目标变量
aimed_date = test_date[test_date['label'] == 1]
# 随机筛选少类扩充中心
index = pd.DataFrame(aimed_date.index).sample(frac=0.1, random_state=1)
index.columns = ['id']
number = len(index)
# 生成array格式
aimed_date_new = aimed_date.ix[index.values.ravel(), :]

随机选取了全量少数样本的10%作为数据扩充的中心点

# 自变量标准化
sc = StandardScaler().fit(aimed_date_new)
aimed_date_new = pd.DataFrame(sc.transform(aimed_date_new))
sc1 = StandardScaler().fit(aimed_date)
aimed_date = pd.DataFrame(sc1.transform(aimed_date))

# 定义欧式距离计算
def dist(a, b):
    a = array(a)
    b = array(b)
    d = ((a[0] - b[0]) ** 2 + (a[1] - b[1]) ** 2 + (a[2] - b[2]) ** 2 + (a[3] - b[3]) ** 2) ** 0.5
    return d

下面定义距离计算的方式,所有算法中,涉及到距离的地方都需要标准化去除冈量,也同时加快了计算的速度
这边采取了欧式距离的方式

# 统计所有检验距离样本个数
row_l1 = aimed_date_new.iloc[:, 0].count()
row_l2 = aimed_date.iloc[:, 0].count()
a = zeros((row_l1, row_l2))
a = pd.DataFrame(a)
# 计算距离矩阵
for i in range(row_l1):
    for j in range(row_l2):
        d = dist(aimed_date_new.iloc[i, :], aimed_date.iloc[j, :])
        a.ix[i, j] = d
b = a.T.apply(lambda x: x.min())

调用上面的计算距离的函数,形成一个距离矩阵

# 找到同类点位置
h = []
z = []
for i in range(number):
    for j in range(len(a.iloc[i, :])):
        ai = a.iloc[i, j]
        bi = b[i]
        if ai == bi:
            h.append(i)
            z.append(j)
        else:
            continue
new_point = [0, 0, 0, 0]
new_point = pd.DataFrame(new_point)
for i in range(len(h)):
    index_a = z[i]
    new = aimed_date.iloc[index_a, :]
    new_point = pd.concat([new, new_point], axis=1)

new_point = new_point.iloc[:, range(len(new_point.columns) - 1)]

再找到位置的情况下,再去原始的数据集中根据位置查找具体的数据

import random
r1 = []
for i in range(len(new_point.columns)):
    r1.append(random.uniform(0, 1))
new_point_last = []
new_point_last = pd.DataFrame(new_point_last)
# 求新点 new_x=old_x+rand()*(append_x-old_x)
for i in range(len(new_point.columns)):
    new_x = (new_point.iloc[1:4, i] - aimed_date_new.iloc[number - 1 - i, 1:4]) * r1[i] + aimed_date_new.iloc[number - 1 - i, 1:4]
    new_point_last = pd.concat([new_point_last, new_x], axis=1)
print new_point_last

最后,再根据smote的计算公式new_x=old_x+rand()*(append_x-old_x),计算出新的点即可。

 

smote算法的伪代码如下:

import random
from sklearn.neighbors import NearestNeighbors
import numpy as np


class Smote:
    def __init__(self,samples,N=1,k=5):
        self.n_samples,self.n_attrs=samples.shape
        self.N=N
        self.k=k
        self.samples=samples
        self.newindex=0
       # self.synthetic=np.zeros((self.n_samples*N,self.n_attrs))


    def over_sampling(self):
        N=int(self.N)
        self.synthetic = np.zeros((self.n_samples * N, self.n_attrs))
        neighbors=NearestNeighbors(n_neighbors=self.k).fit(self.samples)
        print('neighbors',neighbors)
        for i in range(len(self.samples)):
            nnarray=neighbors.kneighbors(self.samples[i].reshape(1,-1),return_distance=False)[0]
            #print nnarray
            self._populate(N,i,nnarray)
        return self.synthetic
    
    # for each minority class samples,choose N of the k nearest neighbors and generate N synthetic samples.
    def _populate(self,N,i,nnarray):
        for j in range(N):
            nn=random.randint(0,self.k-1)
            dif=self.samples[nnarray[nn]]-self.samples[i]
            gap=random.random()
            self.synthetic[self.newindex]=self.samples[i]+gap*dif
            self.newindex+=1
a=np.array([[1,2,3],[4,5,6],[2,3,1],[2,1,2],[2,3,4],[2,3,4]])
s=Smote(a,N=2)              #a为少数数据集,N为倍率,即从k-邻居中取出几个样本点
print(s.over_sampling())

 

SMOTE算法的缺陷

该算法主要存在两方面的问题:一是在近邻选择时,存在一定的盲目性。从上面的算法流程可以看出,在算法执行过程中,需要确定K值,即选择多少个近邻样本,这需要用户自行解决。从K值的定义可以看出,K值的下限是M值(M值为从K个近邻中随机挑选出的近邻样本的个数,且有M< K),M的大小可以根据负类样本数量、正类样本数量和数据集最后需要达到的平衡率决定。但K值的上限没有办法确定,只能根据具体的数据集去反复测试。因此如何确定K值,才能使算法达到最优这是未知的。

另外,该算法无法克服非平衡数据集的数据分布问题,容易产生分布边缘化问题。由于负类样本的分布决定了其可选择的近邻,如果一个负类样本处在负类样本集的分布边缘,则由此负类样本和相邻样本产生的“人造”样本也会处在这个边缘,且会越来越边缘化,从而模糊了正类样本和负类样本的边界,而且使边界变得越来越模糊。这种边界模糊性,虽然使数据集的平衡性得到了改善,但加大了分类算法进行分类的难度.

针对SMOTE算法的进一步改进

针对SMOTE算法存在的边缘化和盲目性等问题,很多人纷纷提出了新的改进办法,在一定程度上改进了算法的性能,但还存在许多需要解决的问题。

Han等人Borderline-SMOTE: A New Over-Sampling Method in Imbalanced Data Sets Learning在SMOTE算法基础上进行了改进,提出了Borderhne.SMOTE算法,解决了生成样本重叠(Overlapping)的问题该算法在运行的过程中,查找一个适当的区域,该区域可以较好地反应数据集的性质,然后在该区域内进行插值,以使新增加的“人造”样本更有效。这个适当的区域一般由经验给定,因此算法在执行的过程中有一定的局限性。




おすすめ

転載: www.cnblogs.com/wqbin/p/11117616.html