デジタル・オーディオ・インターフェイス

デジタル・オーディオ・インターフェイス

 

常にまとめることが、すべてのデジタル・オーディオ・インターフェイスを知りたいと思った、ここでは、CSDNのシェアを入れ、記事の良い要約を見つけました

 

アウトライン


 

名前が示すように、デジタルオーディオインターフェースDAI、すなわちデジタルオーディオインターフェースは、DAI表現はボードまたはプレートとの間にデジタル音声信号を送信します。アナログインタフェース、デジタルオーディオインタフェース強力な抗干渉能力、簡単なハードウェア設計と比較して、DAIは、より広く、オーディオ回路設計で使用されて。図1および図2は、従来の音声信号チェーンのデジタルオーディオ信号との間の差を比較します。

マイクロフォン、プリアンプ、アナログ/デジタル変換器ADC、デジタル/アナログ変換器DAC、増幅器の出力、及びアナログ信号接続その間を用いた従来のオーディオ回路(図1)におけるスピーカ。技術およびパフォーマンスの考慮事項の開発、徐々にリンク(デバイス内に統合)のアナログ回路の両端に押し込むと、チェーン内の集積回路間の信号は、デジタル・インタフェースの形でよりあろう。DSPは、通常、デジタルインターフェースであり、変換器(トランスデューサ、すなわち、マイク&スピーカー)、一般に増幅器のみアナログインターフェースだけでなく、徐々に統合されたデジタルインタフェース機能。現在、IC設計者は、変換器ADC、DAC内であり、変調器は、PCB内の任意のアナログオーディオ信号を取る必要がなくなり、信号チェーンの一端に組み込まれ、信号チェーン内のデバイスの数を減少させます。図2は、完全なデジタル・オーディオ・インターフェースの一例を示しています。

 

 【図従来のオーディオ信号リンク

 

 

図2のデジタルオーディオ信号リンク

そのようなI2S、PCM(パルス符号変調)とPDM(パルス密度変調)のようなディジタルオーディオ信号伝送規格は、主に同じボード上のチップ間の音声信号の伝送のために使用される、インテルHDA(インテルHDオーディオ)PC用オーディオ・サブシステム(サウンドカード)アプリケーション; S / PDIFおよびEthernet AVBは、アプリケーション主に長距離およびインターボード接続ケーブルのニーズに使用されています。

この論文は、I2S、PCMデジタルオーディオインタフェースとPDMを説明し、いくつかの他のインターフェイスをさらに説明します。

 

I2Sインターフェース


 

1. I2Sはじめに

 

I2Sは、IC間サウンド、統合されたインターチップ・サウンドを表し 、 そのようなコーデック(CODEC)などのシステム内の装置間のデジタルオーディオデータを送信するため、または単にIIS、1986で定義されたフィリップスデジタルオーディオ伝送規格(1996年改訂します) 、DSP、デジタル入力/出力インタフェース、ADC、DAC、およびデジタルフィルタ。フィリップス、I2Sとによって定義されたすべてのことに加えI2C何もします。

I2Sデジタルインターフェースは、比較的単純なプロトコル、無アドレスまたはデバイスの選択機構です。I2Sバス上で、唯一のマスタ装置と同時に送信装置。マスタデバイスは、送信および受信デバイス調整する送信装置、受信装置があってもよいし、他の制御装置であってもよいです。I2Sシステムでは、装置本体装置のクロック(SCKとWS)を提供します。図3は、一般的なI2Sシステムのブロック図です。ハイエンドアプリケーションにおいて、CODECは、多くの場合、I2Sマスタデバイスとして正確I2Sのデータの流れを制御します。

 

図3 I2S接続図デバイス

 

I2Sは、二つのチャンネル(左/右)主制御装置内の選択左右のチャンネルデータチャンネル選択スイッチ/ワード(WS)のために送信されたデータを含みます。あなたは、I2Sまたは他のデバイスの数を増やすことによって、マルチチャネル(マルチチャンネル)I2Sインタフェース・アプリケーションを実装することができます。

 

2.割り当て

 

I2Sトランスポート・プロトコルでは、データ信号、クロック信号及び制御信号が別々に送信されます。クロック信号SCK、データ信号SDと左右選択信号WS:I2Sプロトコルは、3本の信号線を画定します。

  • クロック信号シリアルクロック

SCKは、外部スレーブモードによって提供される、モジュール内の同期信号であり、マスターモードはモジュール自体によって内部的に生成されます。BCLKできるように、異なるメーカーのチップモデルは、ビットクロックまたはSCL /シリアルクロック/クロック信号も知られている、異なっていてもよいと呼ばれ

  • データは、シリアルデータ信号

SD是串行数据,在I2S中以二进制补码的形式在数据线上传输。在WS变化后的第一个SCK脉冲,先传输最高位(MSB, Most Significant Bit)。先传送MSB是因为发送设备和接收设备的字长可能不同,当系统字长比数据发送端字长长的时候,数据传输就会出现截断的现象/Truncated,即如果数据接收端接收的数据位比它规定的字长长的话,那么规定字长最低位(LSB: Least Significant Bit)以后的所有位将会被忽略。如果接收的字长比它规定的字长短,那么空余出来的位将会以0填补。通过这种方式可以使音频信号的最高有效位得到传输,从而保证最好的听觉效果。

√ 根据输入或输出特性,不同芯片上的SD也可能称SDATA、SDIN、SDOUT、DACDAT、ADCDAT等;
√ 数据发送既可以同步于SCK的上升沿,也可以是下降沿,但接收设备在SCK的上升沿采样,发送数据时序需考虑

 

  • 左右声道选择信号 Word Select

WS是声道选择信号,表明数据发送端所选择的声道。当:

√ WS=0,表示选择左声道 
√ WS=1,表示选择右声道

 

WS也称帧时钟,即LRCLK/Left Right Clock。WS频率等于声音的采样率。WS既可以在SCK的上升沿,也可以在SCK的下降沿变化。从设备在SCK的上升沿采样WS信号。数据信号MSB在WS改变后的第二个时钟(SCK)上升沿有效(即延迟一个SCK),这样可以让从设备有足够的时间以存储当前接收的数据,并准备好接收下一组数据。

 

3. 电气特性

 

  • 输出电平
VL  < 0.4V
VH > 2.4V

满足驱动TTL电平IIL=–1.6mA 和 IIH = 0.04mA

  • 输入电平
VIL  < 0.4V
VIH > 2.4V

 

注:

1986的SPEC电平定义为TTL,实际应用参考具体器件手册。

 

4. 时序要求

 

在I2S总线中,任何设备都可以通过提供时钟成为I2S的主控设备。考虑到SCK、SD和WS的时延,I2S总线上总的时延包括:

  • 外部时钟SCK由主设备到从设备的时延;
  • 内部时钟和SD及WS的时延

外部时钟SCK到内部时钟的延迟对于数据和左右声道信号WS的输入没有影响,因为这段延迟只增加有效的建立时间(Setup time),如图4所示。需要注意的是发送延迟和接收设备建立时间是否有足够的裕量。所有的时序要求和时钟周期或设备允许的最低时钟周期有关。不同器件的Datasheet都有单独部分说明其时序要求,以下部分截取自I2S Bus Specification。

 

图4. 发送设备时序

 

 

图5. 接收设备时序

注:

图4和图5的时序要求因发送设备的时钟速率不同而有所区别。接收设备的性能指标需要匹配发送设备的性能。表1说明I2S发送和接收时序的要求。

表1. I2S发送和接收时序

 

图6是SPEC对于时钟上升时间的定义。

 

 

图6. 时钟上升时间定义

 

 

5. I2S操作模式

 

根据SD相对于SCK和WS位置的不同,I2S分为三种不同的操作模式,分别为标准I2S模式、左对齐模式和右对齐模式:

  • I2S Phillips Standard    I2S格式
  • Left Justified Standard    左对齐格式
  • Right Justified Standard    右对齐格式

I2S模式属于左对齐中的一种特例,也叫PHILIPS模式,是由标准左对齐格式再延迟一个时钟位变化来的。时序如图7所示,左声道的数据MSB在WS下降沿之后第二个SCK/BCLK上升沿有效,右声道数据的MSB在WS上升沿之后第二个SCK/BCLK上升沿有效。

 

图7. I2S PHILIPS操作模式

 

标准左对齐较少使用,图8为左对齐时序图,和PHILIPS格式(图6)对比可以看出,标准左对齐格式的数据的MSB没有相对于BCLK延迟一个时钟。左对齐格式的左声道的数据MSB在WS上升沿之后SCK/BCLK的第一个上升沿有效;右声道的数据MSB在WS下降沿之后SCK/BCLK第一个上升沿有效。标准左对齐格式的优点在于,由于在WS变化后的第一个SCK上升沿就开始采样,它不需要关心左右声道数据的字长,只要WS的时钟周期足够长,左对齐的方式支持16-32bit字长格式。

 

 

图8. 左对齐操作模式

 

标准右对齐也叫日本格式,EIAJ (Electronic Industries Association of Japan) 或SONY格式,图9为右对齐时序图。右对齐格式左声道的数据LSB在WS下降沿的前一个SCK/BCLK上升沿有效,右声道的数据LSB在WS上升沿的前一个SCK/BCLK上升沿有效。相比于标准左对齐格式,标准右对齐的不足在于接收设备必须事先知道待传数据的字长。这也解释了为什么许多CODEC都会提供多种右对齐格式选择功能。

 

 

图9. 右对齐操作模式

 

以上不同I2S对齐方式时序图来源,详见链接TI CODEC 器件手册。

 

注:

标准左对齐和标准右对齐模式的LRCK/WS高低电平对应的左右声道与标准I2S模式的规定恰好相反!标准左右对齐LRCK/WS高电平对应左声道,LRCK/WS低电平对应右声道;而I2S低电平对应左声道,LRCK/WS高电平对应右声道!

 

6. I2S数据时钟(SCK)频率计算

 

例如:设声音的采样频率为44.1 kHz,即声道选择信号(帧时钟)WS的频率必须也为44.1 kHz;左/右2个声道的量化深度均为16 bit,则I2S的SCK的频率为:44.1 kHz×16×2=1.4112 MHz

如果需要传输20 bit、24 bit或32 bit的左右声道的数据,可以提高SCK的频率,由上式可以计算出需要的SCK的频率。

 

7. Master Clock

 

在I2S/PCM接口的ADC/DAC系统中,除了SCK和WS外,CODEC经常还需要控制器提供MCLK (Master Clock),这是由CODEC内部基于Delta-Sigma (ΔΣ)的架构设计要求使然。MCLK时钟频率一般为256*WS,具体参考特定器件手册。图10示意Nuvoton的NAU8822L CODEC内部PLL框图,可以清晰地看出MCLK作用的区域。

 

图10. CODEC内部PLL示意图

 

PCM接口


 

 

 1. PCM简介

 

PCM (Pulse Code Modulation) 是通过等时间隔(即采样率时钟周期)采样将模拟信号数字化的方法。图11为4 bit 采样深度的PCM数据量化示意图。

图11. 4-bit PCM的采样量化

 

PCM数字音频接口,即说明接口上传输的音频数据通过PCM方式采样得到的,以区别于PDM方式。在音频领域,PCM接口常用于板级音频数字信号的传输,与I2S相似。PCM和I2S的区别于数据相对于帧时钟(FSYNC/WS)的位置、时钟的极性和帧的长度。其实,I2S上传输的也是PCM类型的数据,因此可以说I2S不过是PCM接口的特例。

相比于I2S接口,PCM接口应用更加灵活。通过时分复用(TDM, Time Division Multiplexing)方式,PCM接口支持同时传输多达N个(N>8)声道的数据,减少了管脚数目(实际上是减少I2S的“组”数,因为每组I2S只能传输两声道数据嘛)。TDM不像I2S有统一的标准,不同的IC厂商在应用TDM时可能略有差异,这些差异表现在时钟的极性、声道配置的触发条件和对闲置声道的处理等。

TDM/PCM数字音频接口的硬件拓扑结构也与I2S相近。图12表示应用DSP作为主设备控制ADC和DAC间数字音频流的例子。

综合不少厂商的数据手册,笔者发现,在应用PCM音频接口传输单声道数据(如麦克风)时,其接口名称为PCM;双声道经常使用I2S;而TDM则表示传输两个及以上声道的数据,同时区别于I2S特定的格式。

 

 图12. TDM系统框图

2. 信号定义

 

PCM接口与I2S相似,电路信号包括:

  • PCM_CLK    数据时钟信号
  • PCM_SYNC    帧同步时钟信号
  • PCM_IN    接收数据信号
  • PCM_OUT    发送数据信号

TDM/PCM与I2S接口对应关系见表2:

表2. PCM vs I2S接口

 

3. 操作模式

 

根据 SD相对帧同步时钟FSYNC的位置,TDM分两种基本模式:

  • Mode A: 数据在FSYNC有效后,BCLK的第2个上升沿有效(图13)
  • Mode B: 数据在FSYNC有效后,BCLK的第1个上升沿有效(图14)

 

图13. TDM Mode A

 

图14. TDM Mode B

注:

由于没有统一标准,不同厂商对Mode A和Mode B定义可能有所差别。

 

在实际应用中,总是以帧同步时钟FSYNC的上升沿表示一次传输的开始。帧同步时钟的频率总是等于音频的采样率,比如44.1 kHz,48 kHz等。多数应用只用到FSYNC的上升沿,而忽略其下降沿。根据不同应用FSYNC脉冲宽度的差别,PCM帧同步时钟模式大致分为两种:

  • 长帧同步 Long Frame Sync
  • 短帧同步 Short Frame Sync

长帧同步,短帧同步时序模式如下图16和图17所示。

 

注:

a. 长帧同步,如图15所示,FSYNC脉冲宽度等于1个Slot的长度。Slot在TDM中表示的是传输单个声道所占用的位数。如图15所示TI McASP接口的TDM包括6个Slots,即它最多可包括6声道数据。注意,Slot的位数并不一定等于音频的量化深度。比如Slot可能为32 bit,其中包括24 bit有效数据位(Audio Word) + 8 bit零填充(Zero Padding)。不同厂商对Slot的叫法可能有所区别,比如Circus Logic称之为Channel Block;

 

 

图15. 长帧同步模式

 

b. 短帧同步,FSYNC脉冲宽度等于1个BCLK周期长度;

c. 由于没有统一标准,不同厂商对FSYNC脉冲宽度及触发边沿的设置可能不同,以器件手册为准。

 

图16. 8-bit长帧同步模式

 

 

图17. 16-bit短帧同步模式

 

关于长短帧同步、MSB/LSB和量化深度的区别,对应的PCM时序模式,请参考附件CSR BC06工具:pcmconfigv2_1

通过这个工具很容易理解这些变量的含义。

 

4. 模式设置

 

通过寄存器或者管脚电平设置,可以配置CODEC的DAI工作在不同的操作模式。以AKM的24bit 4ch DAC AK4413为例,如表3所示,通过设置TDM[1:0]和DIF[2:0]等5个寄存器的值,可以选择其SDT1接口工作于20种不同模式,在Datasheet中详细说明了每种模式的时序框图。

表3. 数字音频接口模式选择

 

5. 时钟(BCLK)频率的计算

 

FSYNC的频率等于音频的采样率(例如44.1 kHz,48 kHz等)。Frame每次传输包括所有声道的数据。PCM采样音频数据量化深度一般在16-32bit(最常见为16/24bit)。那么对于8声道,每个声道32bit音频数据,采样率48kHz的系统,TDM的系统时钟速率为:8 × 32 × 48kHz = 12.288 MHz

在器件Datasheet中可以见到TDM128/TDM256/TDM384/TDM512等说法,数字的含义为单个TDM数据帧包含数据的比特数(即帧长)。如上例8声道(Channels)32bit的音频数据,亦称为TDM256(=8*32)。TDM系统时钟速率就可以简单地用采样率乘以TDM帧长计算得出。相同的例子,TDM系统时钟速率:48kHz × 256 = 12.288 MHz

下表4列出系统时钟SCK/BCLK和采样率fs及TDM帧长的关系:

表4. 常见音频采样率对应的系统时钟

 

6. 数据格式

 

在PCM/TDM传输的数据帧(Slots)中,可能还包括音频数据之外的信息。比如在CSR BC06器件Datasheet说明,其设置为16 bit Slot字长时,3或8 bit未使用bit可以用作标签位(Sign Extension)、零填充(Zeros Padding)或是兼容Motorola编解码器的3 bit音频衰减值,如图18所示。

图18. 16-bit位采样字格式

7. 协议分析

 

以R&S的音频分析仪UPV Audio Analyzer为例,在其DAI协议分析面板,如图19,可以选择每帧包含的Slots数(No of Slots,对于I2S选2),Slot的长度,Lead Bits表示有效数据相对于Slot开始位置的OFFSET(比如,Slot Length = 32, Audio Leads = 8, 则表示每个Slot起始后的第9位为有效数据 )。如果选择为左对齐方式(LSB),设备会自动修正Audio Leads值以得到正确的幅值测量结果。

图19. DAI协议分析设置面板

 

PDM接口


 

PDM(Pulse Density Modulation)是一种用数字信号表示模拟信号的调制方法。同为将模拟量转换为数字量的方法,PCM使用等间隔采样方法,将每次采样的模拟分量幅度表示为N位的数字分量(N = 量化深度),因此PCM方式每次采样的结果都是N bit字长的数据。PDM则使用远高于PCM采样率的时钟采样调制模拟分量,只有1位输出,要么为0,要么为1。因此通过PDM方式表示的数字音频也被称为Oversampled 1-bit Audio。相比PDM一连串的0和1,PCM的量化结果更为直观简单。

在以PDM方式作为模数转换方法的应用接收端,需要用到抽取滤波器(Decimation Filter)将密密麻麻的0和1代表的密度分量转换为幅值分量,而PCM方式得到的就已经是幅值相关的数字分量。图20示意为通过PDM方式数字化的正弦波。

图20. PDM方式表示的正弦波

 

PCM方式的逻辑更加简单,但需要用到数据时钟,采样时钟和数据信号三根信号线;PDM方式的逻辑相对复杂,但它只需要两根信号线,即时钟和数据。PDM在诸如手机和平板等对于空间限制严格的场合有着广泛的应用前景。在数字麦克风领域,应用最广的就是PDM接口,其次为I2S接口。PDM格式的音频信号可以在比如LCD屏这样Noise干扰强的电路附近走线(等于没说,这里指数字信号抗干扰能力相比于模拟信号更强,同样PCM也具有此优势)。

通过PDM接口方式,传输双声道数据只要用到两根信号线。如图21示意两个PDM接口的发送设备与同一个接收设备的连接情况,比如Source 1/2分别作为左右声道的麦克风,通过这种方式可以将采集到的双声道数据传送到接收设备。主设备(此例中作为接收设备)为两个从设备提供时钟,分别在时钟的上升沿和下降沿触发选择Source 1/2作为数据输入。图22为Maxim的Class-D类型功放MAX98358对PDM接口时序的要求,可以看到它在PDM_CLK的上升沿采样左声道数据,在PDM_CLK下降沿采样右声道数据。

 

图21. PDM连接示意图(2发送设备 + 1接收设备)

 

图22. PDM时序框图

 

基于PDM的架构不同于I2S和TDM之处在于,抽取滤波器(Decimation Filter)不在发送设备,而在接收设备内部。源端输出是原始的高采样率(oversample)调制数据,如Sigma-Delta调制器的输出,而不是像I2S中那样的抽取数据(An I2S output digital microphone includes the decimation filter, so its output is already at a standard audio samplerate that's easy to interface to and process.)。基于PDM接口的应用降低了发送设备的复杂性,由于作为接收设备的CODEC内部集成抽取滤波器,因此系统整体复杂度大大降低。对于数字麦克风而言,通过使用面向CODEC或处理器制造的更精细硅工艺,而非传统麦克风使用的工艺,可以实现更高效率的抽取滤波器。

 

其它接口


 

S/PDIF: Sony/Philips Digital Interface Format

Intel HDA: Intel High Definition Audio

Ethernet AVB: Audio Video Bridging

おすすめ

転載: blog.csdn.net/ll148305879/article/details/93212495