スパークエンタープライズプロジェクト戦闘、ソース深さ分析、リアルタイムのストリーム処理、機械学習

スパーク(A):基本的な構造と原則

 Apacheのスパークは、速さ、使いやすさと大規模データ処理フレームワークの高度な分析を中心に構築された当初、カリフォルニア大学によって2009年に開発し、バークレーAMPLab、そして2010年にはApacheのオープンソースプロジェクトの一つとなった、などのHadoopと嵐にされます比べて、他のビッグデータとのMapReduce技術、スパークは、次のような利点があります。

  • スパークは、大型データ処理のデータセットとデータソースの異なる特性(テキストデータ、グラフィックデータ等)(バッチまたはリアルタイム・データ・ストリームのデータ)とのニーズの多様性を管理するための包括的で統一されたフレームワークを提供します

  • スパークの公式情報がより早く100回実行するメモリでHadoopクラスタを適用する、あるいは10倍のディスク速度でアプリケーションを実行できるようにすることができます

 目標:

  • 建築とエコロジー

  • スパークとHadoopの

  • プロセスと特性を実行します

  • 一般的な用語

  • スタンドアロンモード

  • 糸クラスタ

  • RDDの実行中のプロセス

建築とエコロジー:


  • 通常、処理するデータの量は、スタンドアローンの寸法よりも多い場合(例えば、当社のコンピュータとして4GBのメモリを持っており、我々は、データの100ギガバイト以上に対処する必要があります)、その後、我々は時々我々はデータの量を処理する必要がある場合があり、スパーク・クラスタを計算するために選択することができません大規模な、しかし計算は非常に複雑であり、多くの時間を必要とし、その後、我々はまた、強力なスパーククラスタコンピューティングリソースを活用することを選択することができ、並列化は次のようにそのアーキテクチャ図がある計算します。

  • コアスパーク:基本的な機能を含むスパーク、特にRDDは、それに対する操作と操作の両方をAPIを定義しました。他のライブラリのスパークは、RDDとスパークコアの上に構築されています

  • スパークSQL:SQLバリアントは、Apache Hiveのでハイブクエリ言語(HiveQL)を提供スパークと対話するAPIです。各データベーステーブルはRDDとして扱われ、スパークSQLクエリを操作スパークに変換されます。

  • ストリーミングスパーク:リアルタイム・データ・ストリームの処理及び制御を。スパークストリーミングは、プログラムが通常のRDDと同じリアルタイムデータを扱うことができるようになります

  • MLlib:一般的に使用される機械学習アルゴリズムライブラリは、アルゴリズムは、RDDの操作のスパークとして実装されています。このライブラリは、このような分類、回帰およびその他の大規模なデータセットとしてスケーラブルな学習アルゴリズムは、反復を操作する必要が含まれています。

  • GraphX:管理図、操作アルゴリズム及び計算ツールのセットの平行セットを示します。GraphXは、サブマップを作成した管理図を含む、アクセス経路上のすべての頂点の動作をRDDのAPIを拡張します

  • 次のように図スパークアーキテクチャが構成される。

  • クラスタマネージャは:スタンドアロンモードでは、マスターノードがマスターは労働者を監視するために、クラスタ全体を制御しています。ExplorerのYARNモードでは

  • ワーカーノード:ノード、エグゼキュータまたはドライバを開始する制御を担当する計算ノード。

  • ドライバー:main()関数のアプリケーションの実行

  • エグゼキュータ:アクチュエータ、ワーカーノード上で実行中のプロセスへの応用

スパークとのHadoop:


  • Hadoopのは、2つのコアモジュール、分散ストレージモジュールと、分散コンピューティングモジュールのMapReduce HDFSを有します

  • 分析スパークは、ほとんどのHadoop分散ファイルシステム、HDFSに依存して、分散ファイルシステムを提供していない自分自身の火付け役

  • MapReduceのデータのスパークでのHadoopは、MapReduceのに計算して比較することができ、より速くスパーク、より機能豊富なを提供

  • 次のような関係は以下のとおりです。

 プロセスと特性を実行:


  • 次のように操作のスパークフローチャートです。

  1. 動作環境を構築するためにアプリケーションをスパーク、SparkContextを開始

  2. リソースマネージャにSparkContext、エグゼキュータのリソースを実行しているアプリケーション(スタンドアロン、Mesos、糸することができます)、およびStandaloneExecutorbackendを開始

  3. SparkContextを適用するには、タスクエグゼキュータ

  4. SparkContextは、エグゼキュータにアプリケーションを配布します

  5. 図SparkContextは、実行中のエグゼキュータにタスクスケジューラタスクによって、最終的にタスクセットタスクスケジューラを送信するためにDAG、ステージへのDAGグラフを構築しました

  6. タスクエグゼキュータで実行されているが、すべてのリソースの自由がなくなりました

     実行機能をスパーク:

  1. 每个Application获取专属的executor进程,该进程在Application期间一直驻留,并以多线程方式运行Task。这种Application隔离机制是有优势的,无论是从调度角度看(每个Driver调度他自己的任务),还是从运行角度看(来自不同Application的Task运行在不同JVM中),当然这样意味着Spark Application不能跨应用程序共享数据,除非将数据写入外部存储系统

  2. Spark与资源管理器无关,只要能够获取executor进程,并能保持相互通信就可以了

  3. 提交SparkContext的Client应该靠近Worker节点(运行Executor的节点),最好是在同一个Rack里,因为Spark Application运行过程中SparkContext和Executor之间有大量的信息交换

  4. Task采用了数据本地性和推测执行的优化机制

常用术语:


  • Application: Appliction都是指用户编写的Spark应用程序,其中包括一个Driver功能的代码和分布在集群中多个节点上运行的Executor代码

  • Driver:  Spark中的Driver即运行上述Application的main函数并创建SparkContext,创建SparkContext的目的是为了准备Spark应用程序的运行环境,在Spark中有SparkContext负责与ClusterManager通信,进行资源申请、任务的分配和监控等,当Executor部分运行完毕后,Driver同时负责将SparkContext关闭,通常用SparkContext代表Driver

  • Executor:  某个Application运行在worker节点上的一个进程,  该进程负责运行某些Task, 并且负责将数据存到内存或磁盘上,每个Application都有各自独立的一批Executor, 在Spark on Yarn模式下,其进程名称为CoarseGrainedExecutor Backend。一个CoarseGrainedExecutor Backend有且仅有一个Executor对象, 负责将Task包装成taskRunner,并从线程池中抽取一个空闲线程运行Task, 这个每一个oarseGrainedExecutor Backend能并行运行Task的数量取决与分配给它的cpu个数

  • Cluter Manager:指的是在集群上获取资源的外部服务。目前有三种类型


    1. Standalon : spark原生的资源管理,由Master负责资源的分配

    2. Apache Mesos:与hadoop MR兼容性良好的一种资源调度框架

    3. Hadoop Yarn: 主要是指Yarn中的ResourceManager

  • Worker: 集群中任何可以运行Application代码的节点,在Standalone模式中指的是通过slave文件配置的Worker节点,在Spark on Yarn模式下就是NoteManager节点

  • Task: 被送到某个Executor上的工作单元,但hadoopMR中的MapTask和ReduceTask概念一样,是运行Application的基本单位,多个Task组成一个Stage,而Task的调度和管理等是由TaskScheduler负责

  • Job: 包含多个Task组成的并行计算,往往由Spark Action触发生成, 一个Application中往往会产生多个Job

  • Stage: 每个Job会被拆分成多组Task, 作为一个TaskSet, 其名称为Stage,Stage的划分和调度是有DAGScheduler来负责的,Stage有非最终的Stage(Shuffle Map Stage)和最终的Stage(Result Stage)两种,Stage的边界就是发生shuffle的地方

  • DAGScheduler: 根据Job构建基于Stage的DAG(Directed Acyclic Graph有向无环图),并提交Stage给TASkScheduler。 其划分Stage的依据是RDD之间的依赖的关系找出开销最小的调度方法,如下图

  • TASKSedulter: 将TaskSET提交给worker运行,每个Executor运行什么Task就是在此处分配的. TaskScheduler维护所有TaskSet,当Executor向Driver发生心跳时,TaskScheduler会根据资源剩余情况分配相应的Task。另外TaskScheduler还维护着所有Task的运行标签,重试失败的Task。下图展示了TaskScheduler的作用

  • 在不同运行模式中任务调度器具体为:


    1. Spark on Standalone模式为TaskScheduler

    2. YARN-Client模式为YarnClientClusterScheduler

    3. YARN-Cluster模式为YarnClusterScheduler

  • 将这些术语串起来的运行层次图如下:

  • Job=多个stage,Stage=多个同种task, Task分为ShuffleMapTask和ResultTask,Dependency分为ShuffleDependency和NarrowDependency

Spark运行模式:


  • Spark的运行模式多种多样,灵活多变,部署在单机上时,既可以用本地模式运行,也可以用伪分布模式运行,而当以分布式集群的方式部署时,也有众多的运行模式可供选择,这取决于集群的实际情况,底层的资源调度即可以依赖外部资源调度框架,也可以使用Spark内建的Standalone模式。

  • 对于外部资源调度框架的支持,目前的实现包括相对稳定的Mesos模式,以及hadoop YARN模式

  • 本地模式:常用于本地开发测试,本地还分别 local 和 local cluster

standalone: 独立集群运行模式


  • Standalone模式使用Spark自带的资源调度框架

  • 采用Master/Slaves的典型架构,选用ZooKeeper来实现Master的HA

  • 框架结构图如下:

  • 该模式主要的节点有Client节点、Master节点和Worker节点。其中Driver既可以运行在Master节点上中,也可以运行在本地Client端。当用spark-shell交互式工具提交Spark的Job时,Driver在Master节点上运行;当使用spark-submit工具提交Job或者在Eclips、IDEA等开发平台上使用”new SparkConf.setManager(“spark://master:7077”)”方式运行Spark任务时,Driver是运行在本地Client端上的

  • 运行过程如下图:(参考至:http://blog.csdn.net/gamer_gyt/article/details/51833681

  1. SparkContext连接到Master,向Master注册并申请资源(CPU Core 和Memory)

  2. Master根据SparkContext的资源申请要求和Worker心跳周期内报告的信息决定在哪个Worker上分配资源,然后在该Worker上获取资源,然后启动StandaloneExecutorBackend;

  3. StandaloneExecutorBackend向SparkContext注册;

  4. SparkContext将Applicaiton代码发送给StandaloneExecutorBackend;并且SparkContext解析Applicaiton代码,构建DAG图,并提交给DAG Scheduler分解成Stage(当碰到Action操作时,就会催生Job;每个Job中含有1个或多个Stage,Stage一般在获取外部数据和shuffle之前产生),然后以Stage(或者称为TaskSet)提交给Task Scheduler,Task Scheduler负责将Task分配到相应的Worker,最后提交给StandaloneExecutorBackend执行;

  5. StandaloneExecutorBackend会建立Executor线程池,开始执行Task,并向SparkContext报告,直至Task完成

  6. 所有Task完成后,SparkContext向Master注销,释放资源

yarn:  (参考:http://blog.csdn.net/gamer_gyt/article/details/51833681)


  • Spark on YARN模式根据Driver在集群中的位置分为两种模式:一种是YARN-Client模式,另一种是YARN-Cluster(或称为YARN-Standalone模式)

  • Yarn-Client模式中,Driver在客户端本地运行,这种模式可以使得Spark Application和客户端进行交互,因为Driver在客户端,所以可以通过webUI访问Driver的状态,默认是http://hadoop1:4040访问,而YARN通过http:// hadoop1:8088访问

  • YARN-client的工作流程步骤为:

  • Spark Yarn Client向YARN的ResourceManager申请启动Application Master。同时在SparkContent初始化中将创建DAGScheduler和TASKScheduler等,由于我们选择的是Yarn-Client模式,程序会选择YarnClientClusterScheduler和YarnClientSchedulerBackend

  • ResourceManager收到请求后,在集群中选择一个NodeManager,为该应用程序分配第一个Container,要求它在这个Container中启动应用程序的ApplicationMaster,与YARN-Cluster区别的是在该ApplicationMaster不运行SparkContext,只与SparkContext进行联系进行资源的分派

  • Client中的SparkContext初始化完毕后,与ApplicationMaster建立通讯,向ResourceManager注册,根据任务信息向ResourceManager申请资源(Container)

  • 一旦ApplicationMaster申请到资源(也就是Container)后,便与对应的NodeManager通信,要求它在获得的Container中启动CoarseGrainedExecutorBackend,CoarseGrainedExecutorBackend启动后会向Client中的SparkContext注册并申请Task

  • client中的SparkContext分配Task给CoarseGrainedExecutorBackend执行,CoarseGrainedExecutorBackend运行Task并向Driver汇报运行的状态和进度,以让Client随时掌握各个任务的运行状态,从而可以在任务失败时重新启动任务

  • 应用程序运行完成后,Client的SparkContext向ResourceManager申请注销并关闭自己

Spark Cluster模式:

  • 在YARN-Cluster模式中,当用户向YARN中提交一个应用程序后,YARN将分两个阶段运行该应用程序:


    1. 第一个阶段是把Spark的Driver作为一个ApplicationMaster在YARN集群中先启动;

    2. 第二个阶段是由ApplicationMaster创建应用程序,然后为它向ResourceManager申请资源,并启动Executor来运行Task,同时监控它的整个运行过程,直到运行完成

  • YARN-cluster的工作流程分为以下几个步骤

  • Spark Yarn Client向YARN中提交应用程序,包括ApplicationMaster程序、启动ApplicationMaster的命令、需要在Executor中运行的程序等

  • ResourceManager收到请求后,在集群中选择一个NodeManager,为该应用程序分配第一个Container,要求它在这个Container中启动应用程序的ApplicationMaster,其中ApplicationMaster进行SparkContext等的初始化

  • ApplicationMaster向ResourceManager注册,这样用户可以直接通过ResourceManage查看应用程序的运行状态,然后它将采用轮询的方式通过RPC协议为各个任务申请资源,并监控它们的运行状态直到运行结束

  • 一旦ApplicationMaster申请到资源(也就是Container)后,便与对应的NodeManager通信,要求它在获得的Container中启动CoarseGrainedExecutorBackend,CoarseGrainedExecutorBackend启动后会向ApplicationMaster中的SparkContext注册并申请Task。这一点和Standalone模式一样,只不过SparkContext在Spark Application中初始化时,使用CoarseGrainedSchedulerBackend配合YarnClusterScheduler进行任务的调度,其中YarnClusterScheduler只是对TaskSchedulerImpl的一个简单包装,增加了对Executor的等待逻辑等

  • ApplicationMaster中的SparkContext分配Task给CoarseGrainedExecutorBackend执行,CoarseGrainedExecutorBackend运行Task并向ApplicationMaster汇报运行的状态和进度,以让ApplicationMaster随时掌握各个任务的运行状态,从而可以在任务失败时重新启动任务

  • 应用程序运行完成后,ApplicationMaster向ResourceManager申请注销并关闭自己

Spark Client 和 Spark Cluster的区别:

  • 理解YARN-Client和YARN-Cluster深层次的区别之前先清楚一个概念:Application Master。在YARN中,每个Application实例都有一个ApplicationMaster进程,它是Application启动的第一个容器。它负责和ResourceManager打交道并请求资源,获取资源之后告诉NodeManager为其启动Container。从深层次的含义讲YARN-Cluster和YARN-Client模式的区别其实就是ApplicationMaster进程的区别

  • YARN-Cluster模式下,Driver运行在AM(Application Master)中,它负责向YARN申请资源,并监督作业的运行状况。当用户提交了作业之后,就可以关掉Client,作业会继续在YARN上运行,因而YARN-Cluster模式不适合运行交互类型的作业

  • YARN-Client模式下,Application Master仅仅向YARN请求Executor,Client会和请求的Container通信来调度他们工作,也就是说Client不能离开

思考: 我们在使用Spark提交job时使用的哪种模式?

 

RDD运行流程:


  • RDD在Spark中运行大概分为以下三步:


    1. 创建RDD对象

    2. DAGScheduler模块介入运算,计算RDD之间的依赖关系,RDD之间的依赖关系就形成了DAG

    3. 每一个Job被分为多个Stage。划分Stage的一个主要依据是当前计算因子的输入是否是确定的,如果是则将其分在同一个Stage,避免多个Stage之间的消息传递开销

  • 示例图如下:

  • 以下面一个按 A-Z 首字母分类,查找相同首字母下不同姓名总个数的例子来看一下 RDD 是如何运行起来的

  • 创建 RDD  上面的例子除去最后一个 collect 是个动作,不会创建 RDD 之外,前面四个转换都会创建出新的 RDD 。因此第一步就是创建好所有 RDD( 内部的五项信息 )?

  • 创建执行计划 Spark 会尽可能地管道化,并基于是否要重新组织数据来划分 阶段 (stage) ,例如本例中的 groupBy() 转换就会将整个执行计划划分成两阶段执行。最终会产生一个 DAG(directed acyclic graph ,有向无环图 ) 作为逻辑执行计划

  • 调度任务  将各阶段划分成不同的 任务 (task) ,每个任务都是数据和计算的合体。在进行下一阶段前,当前阶段的所有任务都要执行完成。因为下一阶段的第一个转换一定是重新组织数据的,所以必须等当前阶段所有结果数据都计算出来了才能继续

作者:杨思义,2014年6月至今工作于北京亚信智慧数据科技有限公司 BDX大数据事业部,从2014年9月开始从事项目spark相关应用开发。

  来源:数盟

  Spark简介

  Spark是整个BDAS的核心组件,是一个大数据分布式编程框架,不仅实现了MapReduce的算子map 函数和reduce函数及计算模型,还提供更为丰富的算子,如filter、join、groupByKey等。是一个用来实现快速而同用的集群计算的平台。

  Spark将分布式数据抽象为弹性分布式数据集(RDD),实现了应用任务调度、RPC、序列化和压缩,并为运行在其上的上层组件提供API。其底层采用Scala这种函数式语言书写而成,并且所提供的API深度借鉴Scala函数式的编程思想,提供与Scala类似的编程接口

  Sparkon Yarn

  

  从用户提交作业到作业运行结束整个运行期间的过程分析。

  一、客户端进行操作

  1. 根据yarnConf来初始化yarnClient,并启动yarnClient

  2. 创建客户端Application,并获取Application的ID,进一步判断集群中的资源是否满足executor和ApplicationMaster申请的资源,如果不满足则抛出IllegalArgumentException;

  3. 设置资源、环境变量:其中包括了设置Application的Staging目录、准备本地资源(jar文件、log4j.properties)、设置Application其中的环境变量、创建Container启动的Context等;

  4. 设置Application提交的Context,包括设置应用的名字、队列、AM的申请的Container、标记该作业的类型为Spark;

  5. 申请Memory,并最终通过yarnClient.submitApplication向ResourceManager提交该Application。

  当作业提交到YARN上之后,客户端就没事了,甚至在终端关掉那个进程也没事,因为整个作业运行在YARN集群上进行,运行的结果将会保存到HDFS或者日志中。

  二、提交到YARN集群,YARN操作

  1. 运行ApplicationMaster的run方法;

  2. 设置好相关的环境变量。

  3. 创建amClient,并启动;

  4. 在Spark UI启动之前设置Spark UI的AmIpFilter;

  5. 在startUserClass函数专门启动了一个线程(名称为Driver的线程)来启动用户提交的Application,也就是启动了Driver。在Driver中将会初始化SparkContext;

  6. 等待SparkContext初始化完成,最多等待spark.yarn.applicationMaster.waitTries次数(默认为10),如果等待了的次数超过了配置的,程序将会退出;否则用SparkContext初始化yarnAllocator;

  7. 当SparkContext、Driver初始化完成的时候,通过amClient向ResourceManager注册ApplicationMaster

  8. 分配并启动Executeors。在启动Executeors之前,先要通过yarnAllocator获取到numExecutors个Container,然后在Container中启动Executeors。

      那么这个Application将失败,将Application Status标明为FAILED,并将关闭SparkContext。其实,启动Executeors是通过ExecutorRunnable实现的,而ExecutorRunnable内部是启动CoarseGrainedExecutorBackend的。

  9. 最后,Task将在CoarseGrainedExecutorBackend里面运行,然后运行状况会通过Akka通知CoarseGrainedScheduler,直到作业运行完成。

  Spark节点的概念

  一、Spark驱动器是执行程序中的main()方法的进程。它执行用户编写的用来创建SparkContext(初始化)、创建RDD,以及运行RDD的转化操作和行动操作的代码。

  驱动器节点driver的职责:

  1. 把用户程序转为任务task(driver)

      Spark驱动器程序负责把用户程序转化为多个物理执行单元,这些单元也被称之为任务task(详解见备注)

  2. 为执行器节点调度任务(executor)

      有了物理计划之后,Spark驱动器在各个执行器节点进程间协调任务的调度。Spark驱动器程序会根据当前的执行器节点,把所有任务基于数据所在位置分配给合适的执行器进程。当执行任务时,执行器进程会把缓存的数据存储起来,而驱动器进程同样会跟踪这些缓存数据的位置,并利用这些位置信息来调度以后的任务,以尽量减少数据的网络传输。(就是所谓的移动计算,而不移动数据)。

  二、执行器节点

  作用:

  1. 负责运行组成Spark应用的任务,并将结果返回给驱动器进程;

  2. 通过自身的块管理器(blockManager)为用户程序中要求缓存的RDD提供内存式存储。RDD是直接缓存在执行器进程内的,因此任务可以在运行时充分利用缓存数据加快运算。

  驱动器的职责:

  所有的Spark程序都遵循同样的结构:程序从输入数据创建一系列RDD,再使用转化操作派生成新的RDD,最后使用行动操作手机或存储结果RDD,Spark程序其实是隐式地创建出了一个由操作组成的逻辑上的有向无环图DAG。当驱动器程序执行时,它会把这个逻辑图转为物理执行计划。

  这样 Spark就把逻辑计划转为一系列步骤(stage),而每个步骤又由多个任务组成。这些任务会被打包送到集群中。

  Spark初始化

  1. 每个Spark应用都由一个驱动器程序来发起集群上的各种并行操作。驱动器程序包含应用的main函数,并且定义了集群上的分布式数据集,以及对该分布式数据集应用了相关操作。

  2. 驱动器程序通过一个SparkContext对象来访问spark,这个对象代表对计算集群的一个连接。(比如在sparkshell启动时已经自动创建了一个SparkContext对象,是一个叫做SC的变量。(下图,查看变量sc)

      

  3. 一旦创建了sparkContext,就可以用它来创建RDD。比如调用sc.textFile()来创建一个代表文本中各行文本的RDD。(比如vallinesRDD = sc.textFile(“yangsy.text”),val spark = linesRDD.filter(line=>line.contains(“spark”),spark.count())

      执行这些操作,驱动器程序一般要管理多个执行器,就是我们所说的executor节点。

  4. 在初始化SparkContext的同时,加载sparkConf对象来加载集群的配置,从而创建sparkContext对象。

      从源码中可以看到,在启动thriftserver时,调用了spark- daemon.sh文件,该文件源码如左图,加载spark_home下的conf中的文件。

      

      (在执行后台代码时,需要首先创建conf对象,加载相应参数, val sparkConf = newSparkConf().setMaster("local").setAppName("cocapp").set("spark.executor.memory","1g"), val sc: SparkContext = new SparkContext(sparkConf))

  RDD工作原理:

  RDD(Resilient DistributedDatasets)[1] ,弹性分布式数据集,是分布式内存的一个抽象概念,RDD提供了一种高度受限的共享内存模型,即RDD是只读的记录分区的集合,只能通过在其他RDD执行确定的转换操作(如map、join和group by)而创建,然而这些限制使得实现容错的开销很低。对开发者而言,RDD可以看作是Spark的一个对象,它本身运行于内存中,如读文件是一个RDD,对文件计算是一个RDD,结果集也是一个RDD ,不同的分片、数据之间的依赖、key-value类型的map数据都可以看做RDD。

  主要分为三部分:创建RDD对象,DAG调度器创建执行计划,Task调度器分配任务并调度Worker开始运行。

  SparkContext(RDD相关操作)→通过(提交作业)→(遍历RDD拆分stage→生成作业)DAGScheduler→通过(提交任务集)→任务调度管理(TaskScheduler)→通过(按照资源获取任务)→任务调度管理(TaskSetManager)

  Transformation返回值还是一个RDD。它使用了链式调用的设计模式,对一个RDD进行计算后,变换成另外一个RDD,然后这个RDD又可以进行另外一次转换。这个过程是分布式的。

  Action返回值不是一个RDD。它要么是一个Scala的普通集合,要么是一个值,要么是空,最终或返回到Driver程序,或把RDD写入到文件系统中

  转换(Transformations)(如:map, filter, groupBy, join等),Transformations操作是Lazy的,也就是说从一个RDD转换生成另一个RDD的操作不是马上执行,Spark在遇到Transformations操作时只会记录需要这样的操作,并不会去执行,需要等到有Actions操作的时候才会真正启动计算过程进行计算。

  操作(Actions)(如:count, collect, save等),Actions操作会返回结果或把RDD数据写到存储系统中。Actions是触发Spark启动计算的动因。

  它们本质区别是:Transformation返回值还是一个RDD。它使用了链式调用的设计模式,对一个RDD进行计算后,变换成另外一个RDD,然后这个RDD又可以进行另外一次转换。这个过程是分布式的。Action返回值不是一个RDD。它要么是一个Scala的普通集合,要么是一个值,要么是空,最终或返回到Driver程序,或把RDD写入到文件系统中。关于这两个动作,在Spark开发指南中会有就进一步的详细介绍,它们是基于Spark开发的核心。

  RDD基础

  1. Spark中的RDD就是一个不可变的分布式对象集合。每个RDD都被分为多个分区,这些分区运行在集群的不同节点上。创建RDD的方法有两种:一种是读取一个外部数据集;一种是在群东程序里分发驱动器程序中的对象集合,不如刚才的示例,读取文本文件作为一个字符串的RDD的示例。

  2. 创建出来后,RDD支持两种类型的操作:转化操作和行动操作

      转化操作会由一个RDD生成一个新的RDD。(比如刚才的根据谓词筛选)

      行动操作会对RDD计算出一个结果,并把结果返回到驱动器程序中,或把结果存储到外部存储系统(比如HDFS)中。比如first()操作就是一个行动操作,会返回RDD的第一个元素。

      注:转化操作与行动操作的区别在于Spark计算RDD的方式不同。虽然你可以在任何时候定义一个新的RDD,但Spark只会惰性计算这些RDD。它们只有第一个在一个行动操作中用到时,才会真正的计算。之所以这样设计,是因为比如刚才调用sc.textFile(...)时就把文件中的所有行都读取并存储起来,就会消耗很多存储空间,而我们马上又要筛选掉其中的很多数据。

      这里还需要注意的一点是,spark会在你每次对它们进行行动操作时重新计算。如果想在多个行动操作中重用同一个RDD,那么可以使用RDD.persist()或RDD.collect()让Spark把这个RDD缓存下来。(可以是内存,也可以是磁盘)

  3. Spark会使用谱系图来记录这些不同RDD之间的依赖关系,Spark需要用这些信息来按需计算每个RDD,也可以依靠谱系图在持久化的RDD丢失部分数据时用来恢复所丢失的数据。(如下图,过滤errorsRDD与warningsRDD,最终调用union()函数)

      

  RDD计算方式

  

  RDD的宽窄依赖

  

  窄依赖 (narrowdependencies) 和宽依赖 (widedependencies) 。窄依赖是指 父 RDD 的每个分区都只被子 RDD 的一个分区所使用 。相应的,那么宽依赖就是指父 RDD 的分区被多个子 RDD 的分区所依赖。例如, map 就是一种窄依赖,而 join 则会导致宽依赖

  这种划分有两个用处。首先,窄依赖支持在一个结点上管道化执行。例如基于一对一的关系,可以在 filter 之后执行 map 。其次,窄依赖支持更高效的故障还原。因为对于窄依赖,只有丢失的父 RDD 的分区需要重新计算。而对于宽依赖,一个结点的故障可能导致来自所有父 RDD 的分区丢失,因此就需要完全重新执行。因此对于宽依赖,Spark 会在持有各个父分区的结点上,将中间数据持久化来简化故障还原,就像 MapReduce 会持久化 map 的输出一样。

  SparkExample

  

  步骤 1 :创建 RDD 。上面的例子除去最后一个 collect 是个动作,不会创建 RDD 之外,前面四个转换都会创建出新的 RDD 。因此第一步就是创建好所有 RDD( 内部的五项信息 ) 。

  步骤 2 :创建执行计划。Spark 会尽可能地管道化,并基于是否要重新组织数据来划分 阶段 (stage) ,例如本例中的 groupBy() 转换就会将整个执行计划划分成两阶段执行。最终会产生一个 DAG(directedacyclic graph ,有向无环图 ) 作为逻辑执行计划。

  步骤 3 :调度任务。 将各阶段划分成不同的 任务 (task) ,每个任务都是数据和计算的合体。在进行下一阶段前,当前阶段的所有任务都要执行完成。因为下一阶段的第一个转换一定是重新组织数据的,所以必须等当前阶段所有结果数据都计算出来了才能继续。

  假设本例中的 hdfs://names 下有四个文件块,那么 HadoopRDD 中 partitions 就会有四个分区对应这四个块数据,同时 preferedLocations 会指明这四个块的最佳位置。现在,就可以创建出四个任务,并调度到合适的集群结点上。

  Spark数据分区

  1. Spark的特性是对数据集在节点间的分区进行控制。在分布式系统中,通讯的代价是巨大的,控制数据分布以获得最少的网络传输可以极大地提升整体性能。Spark程序可以通过控制RDD分区方式来减少通讯的开销。

  2. Spark中所有的键值对RDD都可以进行分区。确保同一组的键出现在同一个节点上。比如,使用哈希分区将一个RDD分成了100个分区,此时键的哈希值对100取模的结果相同的记录会被放在一个节点上。

      (可使用partitionBy(newHashPartitioner(100)).persist()来构造100个分区)

  3. Spark中的许多操作都引入了将数据根据键跨界点进行混洗的过程。(比如:join(),leftOuterJoin(),groupByKey(),reducebyKey()等)对于像reduceByKey()这样只作用于单个RDD的操作,运行在未分区的RDD上的时候会导致每个键的所有对应值都在每台机器上进行本地计算。

  SparkSQL的shuffle过程

  

  Spark SQL的核心是把已有的RDD,带上Schema信息,然后注册成类似sql里的”Table”,对其进行sql查询。这里面主要分两部分,一是生成SchemaRD,二是执行查询。

  如果是spark-hive项目,那么读取metadata信息作为Schema、读取hdfs上数据的过程交给Hive完成,然后根据这俩部分生成SchemaRDD,在HiveContext下进行hql()查询。

  SparkSQL结构化数据

  1. 首先说一下ApacheHive,Hive可以在HDFS内或者在其他存储系统上存储多种格式的表。SparkSQL可以读取Hive支持的任何表。要把Spark SQL连接已有的hive上,需要提供Hive的配置文件。hive-site.xml文件复制到spark的conf文件夹下。再创建出HiveContext对象(sparksql的入口),然后就可以使用HQL来对表进行查询,并以由行足证的RDD的形式拿到返回的数据。

  2. 创建Hivecontext并查询数据

      importorg.apache.spark.sql.hive.HiveContext

      valhiveCtx = new org.apache.spark.sql.hive.HiveContext(sc)

      valrows = hiveCtx.sql(“SELECT name,age FROM users”)

      valfitstRow – rows.first()

      println(fitstRow.getSgtring(0)) //字段0是name字段

  3. 通过jdbc连接外部数据源更新与加载

      Class.forName("com.mysql.jdbc.Driver")

      val conn =DriverManager.getConnection(mySQLUrl)

      val stat1 =conn.createStatement()

      stat1.execute("UPDATE CI_LABEL_INFO set DATA_STATUS_ID = 2 , DATA_DATE ='" + dataDate +"' where LABEL_ID in ("+allCreatedLabels.mkString(",")+")")

      stat1.close()

      //加载外部数据源数据到内存

      valDIM_COC_INDEX_MODEL_TABLE_CONF =sqlContext.jdbc(mySQLUrl,"DIM_COC_INDEX_MODEL_TABLE_CONF").cache()

      val targets =DIM_COC_INDEX_MODEL_TABLE_CONF.filter("TABLE_DATA_CYCLE ="+TABLE_DATA_CYCLE).collect

  SparkSQL解析

  

  首先说下传统数据库的解析,传统数据库的解析过程是按Rusult、Data Source、Operation的次序来解析的。传统数据库先将读入的SQL语句进行解析,分辨出SQL语句中哪些词是关键字(如select,from,where),哪些是表达式,哪些是Projection,哪些是Data Source等等。进一步判断SQL语句是否规范,不规范就报错,规范则按照下一步过程绑定(Bind)。过程绑定是将SQL语句和数据库的数据字典(列,表,视图等)进行绑定,如果相关的Projection、Data Source等都存在,就表示这个SQL语句是可以执行的。在执行过程中,有时候甚至不需要读取物理表就可以返回结果,比如重新运行刚运行过的SQL语句,直接从数据库的缓冲池中获取返回结果。在数据库解析的过程中SQL语句时,将会把SQL语句转化成一个树形结构来进行处理,会形成一个或含有多个节点(TreeNode)的Tree,然后再后续的处理政对该Tree进行一系列的操作。

  Spark SQL对SQL语句的处理和关系数据库对SQL语句的解析采用了类似的方法,首先会将SQL语句进行解析,然后形成一个Tree,后续如绑定、优化等处理过程都是对Tree的操作,而操作方法是采用Rule,通过模式匹配,对不同类型的节点采用不同的操作。SparkSQL有两个分支,sqlContext和hiveContext。sqlContext现在只支持SQL语法解析器(Catalyst),hiveContext支持SQL语法和HiveContext语法解析器。


おすすめ

転載: blog.51cto.com/14384035/2406271