Linux カーネル ASoC DMA エンジン ドライバー

Linux カーネル ASoC フレームワークは、概念的に、組み込みオーディオ システムを、コーデック クラス ドライバー、プラットフォーム クラス ドライバー、マシン クラス ドライバーなどの複数の再利用可能なコンポーネント ドライバーに分割します。実装に関しては、マシン クラスのドライバーは 、struct snd_soc_cardstruct snd_soc_dai_link構造体で記述され、プラットフォーム クラスのドライバーに属する DMA エンジン ドライバーは のstruct snd_soc_component_driver構造体で記述され、コーデック クラスのドライバーと I2S は 、その他のドライバーは 、struct snd_soc_component_driverstruct snd_soc_dai_driverのような構造体で記述されますstruct snd_soc_dai_opsプラットフォーム クラス ドライバーを除くさまざまなドライバーは、コンポーネント抽象化を通じてまとめて編成されます。つまり、これらのドライバーは、グローバル リンク リストstruct snd_soc_component_driverLinux カーネル ASoC フレームワークにstruct snd_soc_componentと同様にsound/soc/soc-core.ccomponent_list

DMA ドライバーの例は次のとおりですsoc/pxa/pxa2xx-pcm.c

static const struct snd_soc_component_driver pxa2xx_soc_platform = {
	.pcm_construct	= pxa2xx_soc_pcm_new,
	.pcm_destruct	= pxa2xx_soc_pcm_free,
	.open		= pxa2xx_soc_pcm_open,
	.close		= pxa2xx_soc_pcm_close,
	.hw_params	= pxa2xx_soc_pcm_hw_params,
	.hw_free	= pxa2xx_soc_pcm_hw_free,
	.prepare	= pxa2xx_soc_pcm_prepare,
	.trigger	= pxa2xx_soc_pcm_trigger,
	.pointer	= pxa2xx_soc_pcm_pointer,
	.mmap		= pxa2xx_soc_pcm_mmap,
};

static int pxa2xx_soc_platform_probe(struct platform_device *pdev)
{
	return devm_snd_soc_register_component(&pdev->dev, &pxa2xx_soc_platform,
					       NULL, 0);
}

static struct platform_driver pxa_pcm_driver = {
	.driver = {
		.name = "pxa-pcm-audio",
	},

	.probe = pxa2xx_soc_platform_probe,
};

module_platform_driver(pxa_pcm_driver);

devm_snd_soc_register_component()DMA エンジン ドライバーは I2S ドライバーやコーデック ドライバーと同じで、 Linux カーネル ASoC フレームワークにfunction形式で登録されますが、特別struct snd_soc_component_driverな点は、その dai ドライバー パラメーターが空であることです。

マシン クラス ドライバーによって定義されるstruct snd_soc_dai_link構造オブジェクトは、struct snd_soc_dai_link_componentそれが参照する他のタイプのドライバーを記述します。たとえば、マシン クラス ドライバーにはsound/soc/pxa/e800_wm9712.c次のコード スニペットがあります。

SND_SOC_DAILINK_DEFS(ac97,
	DAILINK_COMP_ARRAY(COMP_CPU("pxa2xx-ac97")),
	DAILINK_COMP_ARRAY(COMP_CODEC("wm9712-codec", "wm9712-hifi")),
	DAILINK_COMP_ARRAY(COMP_PLATFORM("pxa-pcm-audio")));

SND_SOC_DAILINK_DEFS(ac97_aux,
	DAILINK_COMP_ARRAY(COMP_CPU("pxa2xx-ac97-aux")),
	DAILINK_COMP_ARRAY(COMP_CODEC("wm9712-codec", "wm9712-aux")),
	DAILINK_COMP_ARRAY(COMP_PLATFORM("pxa-pcm-audio")));

static struct snd_soc_dai_link e800_dai[] = {
	{
		.name = "AC97",
		.stream_name = "AC97 HiFi",
		SND_SOC_DAILINK_REG(ac97),
	},
	{
		.name = "AC97 Aux",
		.stream_name = "AC97 Aux",
		SND_SOC_DAILINK_REG(ac97_aux),
	},
};

static struct snd_soc_card e800 = {
	.name = "Toshiba e800",
	.owner = THIS_MODULE,
	.dai_link = e800_dai,
	.num_links = ARRAY_SIZE(e800_dai),

	.dapm_widgets = e800_dapm_widgets,
	.num_dapm_widgets = ARRAY_SIZE(e800_dapm_widgets),
	.dapm_routes = audio_map,
	.num_dapm_routes = ARRAY_SIZE(audio_map),
};

SND_SOC_DAILINK_DEFS()struct snd_soc_dai_linkマクロは、参照される および etc 配列を簡単に定義するcpusため使用されます。ここで、 は、上で見た DMA エンジン ドライバーの参照を定義するために使用ますcodecsplatformsstruct snd_soc_dai_link_componentplatformsDAILINK_COMP_ARRAY(COMP_PLATFORM("pxa-pcm-audio"))

Linux カーネル ASoC フレームワークは、sound/soc/soc-generic-dmaengine-pcmファイル にある汎用 DMA エンジン ドライバーを提供します。このドライバー自体は、Linux カーネル ASoC フレームワークに積極的に登録されません。デバイスとメモリ間でデータを転送するために DMA エンジンを使用する必要があるドライバーは、次のように、同時に登録する必要がありprobeますsound/soc/rockchip/rockchip_pcm.c

static const struct snd_pcm_hardware snd_rockchip_hardware = {
	.info			= SNDRV_PCM_INFO_MMAP |
				  SNDRV_PCM_INFO_MMAP_VALID |
				  SNDRV_PCM_INFO_PAUSE |
				  SNDRV_PCM_INFO_RESUME |
				  SNDRV_PCM_INFO_INTERLEAVED,
	.period_bytes_min	= 32,
	.period_bytes_max	= 8192,
	.periods_min		= 1,
	.periods_max		= 52,
	.buffer_bytes_max	= 64 * 1024,
	.fifo_size		= 32,
};

static const struct snd_dmaengine_pcm_config rk_dmaengine_pcm_config = {
	.pcm_hardware = &snd_rockchip_hardware,
	.prepare_slave_config = snd_dmaengine_pcm_prepare_slave_config,
	.prealloc_buffer_size = 32 * 1024,
};

int rockchip_pcm_platform_register(struct device *dev)
{
	return devm_snd_dmaengine_pcm_register(dev, &rk_dmaengine_pcm_config,
		SND_DMAENGINE_PCM_FLAG_COMPAT);
}
EXPORT_SYMBOL_GPL(rockchip_pcm_platform_register);

ここでの関数は、 rockchip_pcm_platform_register()I2S ドライバーのprobe操作で呼び出されます (次の場所sound/soc/rockchip/rockchip_i2s.cにあります)。

static int rockchip_i2s_probe(struct platform_device *pdev)
{
 . . . . . .

	ret = devm_snd_soc_register_component(&pdev->dev,
					      &rockchip_i2s_component,
					      soc_dai, 1);

	if (ret) {
		dev_err(&pdev->dev, "Could not register DAI\n");
		goto err_suspend;
	}

	ret = rockchip_pcm_platform_register(&pdev->dev);
	if (ret) {
		dev_err(&pdev->dev, "Could not register PCM\n");
		goto err_suspend;
	}

	return 0;
 . . . . . .
	return ret;
}

rockchip_pcm_platform_register()関数呼び出しdevm_snd_dmaengine_pcm_register()関数は、汎用 DMA エンジン ドライバーを登録します。devm_snd_dmaengine_pcm_register()関数定義 (located sound/soc/soc-devres.c) は次のとおりです。

static void devm_dmaengine_pcm_release(struct device *dev, void *res)
{
	snd_dmaengine_pcm_unregister(*(struct device **)res);
}

/**
 * devm_snd_dmaengine_pcm_register - resource managed dmaengine PCM registration
 * @dev: The parent device for the PCM device
 * @config: Platform specific PCM configuration
 * @flags: Platform specific quirks
 *
 * Register a dmaengine based PCM device with automatic unregistration when the
 * device is unregistered.
 */
int devm_snd_dmaengine_pcm_register(struct device *dev,
	const struct snd_dmaengine_pcm_config *config, unsigned int flags)
{
	struct device **ptr;
	int ret;

	ptr = devres_alloc(devm_dmaengine_pcm_release, sizeof(*ptr), GFP_KERNEL);
	if (!ptr)
		return -ENOMEM;

	ret = snd_dmaengine_pcm_register(dev, config, flags);
	if (ret == 0) {
		*ptr = dev;
		devres_add(dev, ptr);
	} else {
		devres_free(ptr);
	}

	return ret;
}
EXPORT_SYMBOL_GPL(devm_snd_dmaengine_pcm_register);

#endif

devm_snd_dmaengine_pcm_register()この関数は、関数をカプセル化することを除いて、前に見た関数devm_snd_soc_register_card()と同じです。関数定義 (located ) は次のとおりです。devm_snd_soc_register_component()snd_dmaengine_pcm_register()snd_dmaengine_pcm_register()sound/soc/soc-generic-dmaengine-pcm.c

static const struct snd_soc_component_driver dmaengine_pcm_component = {
	.name		= SND_DMAENGINE_PCM_DRV_NAME,
	.probe_order	= SND_SOC_COMP_ORDER_LATE,
	.open		= dmaengine_pcm_open,
	.close		= dmaengine_pcm_close,
	.hw_params	= dmaengine_pcm_hw_params,
	.trigger	= dmaengine_pcm_trigger,
	.pointer	= dmaengine_pcm_pointer,
	.pcm_construct	= dmaengine_pcm_new,
};

static const struct snd_soc_component_driver dmaengine_pcm_component_process = {
	.name		= SND_DMAENGINE_PCM_DRV_NAME,
	.probe_order	= SND_SOC_COMP_ORDER_LATE,
	.open		= dmaengine_pcm_open,
	.close		= dmaengine_pcm_close,
	.hw_params	= dmaengine_pcm_hw_params,
	.trigger	= dmaengine_pcm_trigger,
	.pointer	= dmaengine_pcm_pointer,
	.copy_user	= dmaengine_copy_user,
	.pcm_construct	= dmaengine_pcm_new,
};

static const char * const dmaengine_pcm_dma_channel_names[] = {
	[SNDRV_PCM_STREAM_PLAYBACK] = "tx",
	[SNDRV_PCM_STREAM_CAPTURE] = "rx",
};

static int dmaengine_pcm_request_chan_of(struct dmaengine_pcm *pcm,
	struct device *dev, const struct snd_dmaengine_pcm_config *config)
{
	unsigned int i;
	const char *name;
	struct dma_chan *chan;

	if ((pcm->flags & SND_DMAENGINE_PCM_FLAG_NO_DT) || (!dev->of_node &&
	    !(config && config->dma_dev && config->dma_dev->of_node)))
		return 0;

	if (config && config->dma_dev) {
		/*
		 * If this warning is seen, it probably means that your Linux
		 * device structure does not match your HW device structure.
		 * It would be best to refactor the Linux device structure to
		 * correctly match the HW structure.
		 */
		dev_warn(dev, "DMA channels sourced from device %s",
			 dev_name(config->dma_dev));
		dev = config->dma_dev;
	}

	for_each_pcm_streams(i) {
		if (pcm->flags & SND_DMAENGINE_PCM_FLAG_HALF_DUPLEX)
			name = "rx-tx";
		else
			name = dmaengine_pcm_dma_channel_names[i];
		if (config && config->chan_names[i])
			name = config->chan_names[i];
		chan = dma_request_chan(dev, name);
		if (IS_ERR(chan)) {
			/*
			 * Only report probe deferral errors, channels
			 * might not be present for devices that
			 * support only TX or only RX.
			 */
			if (PTR_ERR(chan) == -EPROBE_DEFER)
				return -EPROBE_DEFER;
			pcm->chan[i] = NULL;
		} else {
			pcm->chan[i] = chan;
		}
		if (pcm->flags & SND_DMAENGINE_PCM_FLAG_HALF_DUPLEX)
			break;
	}

	if (pcm->flags & SND_DMAENGINE_PCM_FLAG_HALF_DUPLEX)
		pcm->chan[1] = pcm->chan[0];

	return 0;
}

static void dmaengine_pcm_release_chan(struct dmaengine_pcm *pcm)
{
	unsigned int i;

	for_each_pcm_streams(i) {
		if (!pcm->chan[i])
			continue;
		dma_release_channel(pcm->chan[i]);
		if (pcm->flags & SND_DMAENGINE_PCM_FLAG_HALF_DUPLEX)
			break;
	}
}

/**
 * snd_dmaengine_pcm_register - Register a dmaengine based PCM device
 * @dev: The parent device for the PCM device
 * @config: Platform specific PCM configuration
 * @flags: Platform specific quirks
 */
int snd_dmaengine_pcm_register(struct device *dev,
	const struct snd_dmaengine_pcm_config *config, unsigned int flags)
{
	const struct snd_soc_component_driver *driver;
	struct dmaengine_pcm *pcm;
	int ret;

	pcm = kzalloc(sizeof(*pcm), GFP_KERNEL);
	if (!pcm)
		return -ENOMEM;

#ifdef CONFIG_DEBUG_FS
	pcm->component.debugfs_prefix = "dma";
#endif
	pcm->config = config;
	pcm->flags = flags;

	ret = dmaengine_pcm_request_chan_of(pcm, dev, config);
	if (ret)
		goto err_free_dma;

	if (config && config->process)
		driver = &dmaengine_pcm_component_process;
	else
		driver = &dmaengine_pcm_component;

	ret = snd_soc_component_initialize(&pcm->component, driver, dev);
	if (ret)
		goto err_free_dma;

	ret = snd_soc_add_component(&pcm->component, NULL, 0);
	if (ret)
		goto err_free_dma;

	return 0;

err_free_dma:
	dmaengine_pcm_release_chan(pcm);
	kfree(pcm);
	return ret;
}
EXPORT_SYMBOL_GPL(snd_dmaengine_pcm_register);

/**
 * snd_dmaengine_pcm_unregister - Removes a dmaengine based PCM device
 * @dev: Parent device the PCM was register with
 *
 * Removes a dmaengine based PCM device previously registered with
 * snd_dmaengine_pcm_register.
 */
void snd_dmaengine_pcm_unregister(struct device *dev)
{
	struct snd_soc_component *component;
	struct dmaengine_pcm *pcm;

	component = snd_soc_lookup_component(dev, SND_DMAENGINE_PCM_DRV_NAME);
	if (!component)
		return;

	pcm = soc_component_to_pcm(component);

	snd_soc_unregister_component_by_driver(dev, component->driver);
	dmaengine_pcm_release_chan(pcm);
	kfree(pcm);
}
EXPORT_SYMBOL_GPL(snd_dmaengine_pcm_unregister);

MODULE_LICENSE("GPL");

snd_dmaengine_pcm_register()関数の実行プロセスは次のとおりです。

  1. 構造体オブジェクトを動的に割り当てstruct dmaengine_pcm、そのフィールドconfigflagsフィールドを初期化します。struct dmaengine_pcm構造体定義 (located include/sound/dmaengine_pcm.h) は次のとおりです。
struct dmaengine_pcm {
	struct dma_chan *chan[SNDRV_PCM_STREAM_LAST + 1];
	const struct snd_dmaengine_pcm_config *config;
	struct snd_soc_component component;
	unsigned int flags;
};

この構造体にはstruct snd_soc_component構造体メンバーがあります。

  1. データ送受信用の DMA チャネルを申請するには、デバイスツリーのデバイスノード定義に送受信で参照する DMA チャネルを次のように指定する必要があります。
	i2s0_8ch: i2s@fe470000 {
 . . . . . .
		dmas = <&dmac0 0>, <&dmac0 1>;
		dma-names = "tx", "rx";
 . . . . . .
	};
  1. で渡されたパラメータによるとconfig、選択と選択の唯一の違いは前者ではもう 1 つの操作が定義されていることstruct snd_soc_component_driverですdmaengine_pcm_component_processdmaengine_pcm_componentcopy_user

  2. struct オブジェクトを初期化して追加するには、 struct object 経由で取得できるstruct snd_soc_component関数 ( にありますinclude/sound/dmaengine_pcm.h)がありますstruct snd_soc_componentstruct dmaengine_pcm

static inline struct dmaengine_pcm *soc_component_to_pcm(struct snd_soc_component *p)
{
	return container_of(p, struct dmaengine_pcm, component);
}

汎用 DMA エンジン ドライバーでサポートされる操作は、struct snd_soc_component_driverによって定義されます。グローバル コンポーネント リストでは、対応するコンポーネントは、struct snd_soc_componentそれを登録した開発者によって識別されます。

汎用 DMA エンジン ドライバーを使用する ASoC マシン ドライバーの例 ( にありますsound/soc/rockchip/rockchip_rt5645.c) は次のとおりです。

SND_SOC_DAILINK_DEFS(pcm,
	DAILINK_COMP_ARRAY(COMP_EMPTY()),
	DAILINK_COMP_ARRAY(COMP_CODEC(NULL, "rt5645-aif1")),
	DAILINK_COMP_ARRAY(COMP_EMPTY()));

static struct snd_soc_dai_link rk_dailink = {
	.name = "rt5645",
	.stream_name = "rt5645 PCM",
	.init = rk_init,
	.ops = &rk_aif1_ops,
	/* set rt5645 as slave */
	.dai_fmt = SND_SOC_DAIFMT_I2S | SND_SOC_DAIFMT_NB_NF |
		SND_SOC_DAIFMT_CBS_CFS,
	SND_SOC_DAILINK_REG(pcm),
};

static struct snd_soc_card snd_soc_card_rk = {
	.name = "I2S-RT5650",
	.owner = THIS_MODULE,
	.dai_link = &rk_dailink,
	.num_links = 1,
	.dapm_widgets = rk_dapm_widgets,
	.num_dapm_widgets = ARRAY_SIZE(rk_dapm_widgets),
	.dapm_routes = rk_audio_map,
	.num_dapm_routes = ARRAY_SIZE(rk_audio_map),
	.controls = rk_mc_controls,
	.num_controls = ARRAY_SIZE(rk_mc_controls),
};
 . . . . . .
static int snd_rk_mc_probe(struct platform_device *pdev)
{
 . . . . . .
	rk_dailink.cpus->of_node = of_parse_phandle(np,
			"rockchip,i2s-controller", 0);
	if (!rk_dailink.cpus->of_node) {
		dev_err(&pdev->dev,
			"Property 'rockchip,i2s-controller' missing or invalid\n");
		ret = -EINVAL;
		goto put_codec_of_node;
	}

	rk_dailink.platforms->of_node = rk_dailink.cpus->of_node;
 . . . . . .
}

ここで dai link に定義されている cpus dai 配列と platforms 配列には空の要素が 1 つだけありますが、操作ではprobeデバイス ツリーのデバイス ノードの定義に従って対応する要素が見つかりますof_nodecpus dai とプラットフォームは同じものを参照しますがof_nodesnd_soc_add_pcm_runtime()関数内でstruct snd_soc_componentCPU DAI を追加するプロセスは、まず対応するものを見つけてから から取得することですstruct snd_soc_daistruct snd_soc_daiつまりstruct snd_soc_component、CPU DAI を検索しても一般的struct snd_soc_componentなものは見つかりません。 struct snd_soc_daiDMA エンジンstruct snd_soc_componentプラットフォームに追加するプロセスstruct snd_soc_componentでは、一致するものをすべて直接検索しstruct snd_soc_componentて追加します。

PCM 用に作成するときstruct snd_soc_pcm_runtime、つまりマシン クラス ドライバーの操作でprobesnd_soc_dai_linkCPU DAI とプラットフォームが同じを指すように、これと同様のプロセスが実行されると、of_node対応するof_nodeデバイス ドライバーはユニバーサル DMA エンジン ドライバーを登録します。 , 一般的な DMA エンジンはstruct snd_soc_componentコンポーネント リストに含まれます。

ユニバーサル DMA エンジン ドライバーのstruct snd_soc_component_driverもう 1 つの特別な特徴は、probe_orderとして指定されていることです。これSND_SOC_COMP_ORDER_LATEにより、そのprobeおよびinit操作は相対的に後で実行され、 のsnd_soc_card位置も少し遅くなります。soc_probe_link_components()function(located sound/soc/soc-core.c)の場合:

static int soc_probe_component(struct snd_soc_card *card,
			       struct snd_soc_component *component)
{
	struct snd_soc_dapm_context *dapm =
		snd_soc_component_get_dapm(component);
	struct snd_soc_dai *dai;
	int probed = 0;
	int ret;

	if (!strcmp(component->name, "snd-soc-dummy"))
		return 0;

	if (component->card) {
		if (component->card != card) {
			dev_err(component->dev,
				"Trying to bind component to card \"%s\" but is already bound to card \"%s\"\n",
				card->name, component->card->name);
			return -ENODEV;
		}
		return 0;
	}

	ret = snd_soc_component_module_get_when_probe(component);
	if (ret < 0)
		return ret;

	component->card = card;
	soc_set_name_prefix(card, component);

	soc_init_component_debugfs(component);

	snd_soc_dapm_init(dapm, card, component);

	ret = snd_soc_dapm_new_controls(dapm,
					component->driver->dapm_widgets,
					component->driver->num_dapm_widgets);

	if (ret != 0) {
		dev_err(component->dev,
			"Failed to create new controls %d\n", ret);
		goto err_probe;
	}

	for_each_component_dais(component, dai) {
		ret = snd_soc_dapm_new_dai_widgets(dapm, dai);
		if (ret != 0) {
			dev_err(component->dev,
				"Failed to create DAI widgets %d\n", ret);
			goto err_probe;
		}
	}

	ret = snd_soc_component_probe(component);
	if (ret < 0) {
		dev_err(component->dev,
			"ASoC: failed to probe component %d\n", ret);
		goto err_probe;
	}
	WARN(dapm->idle_bias_off &&
	     dapm->bias_level != SND_SOC_BIAS_OFF,
	     "codec %s can not start from non-off bias with idle_bias_off==1\n",
	     component->name);
	probed = 1;

	/*
	 * machine specific init
	 * see
	 *	snd_soc_component_set_aux()
	 */
	ret = snd_soc_component_init(component);
	if (ret < 0)
		goto err_probe;

	ret = snd_soc_add_component_controls(component,
					     component->driver->controls,
					     component->driver->num_controls);
	if (ret < 0)
		goto err_probe;

	ret = snd_soc_dapm_add_routes(dapm,
				      component->driver->dapm_routes,
				      component->driver->num_dapm_routes);
	if (ret < 0) {
		if (card->disable_route_checks) {
			dev_info(card->dev,
				 "%s: disable_route_checks set, ignoring errors on add_routes\n",
				 __func__);
		} else {
			dev_err(card->dev,
				"%s: snd_soc_dapm_add_routes failed: %d\n",
				__func__, ret);
			goto err_probe;
		}
	}

	/* see for_each_card_components */
	list_add(&component->card_list, &card->component_dev_list);

err_probe:
	if (ret < 0)
		soc_remove_component(component, probed);

	return ret;
}
 . . . . . .
static int soc_probe_link_components(struct snd_soc_card *card)
{
	struct snd_soc_component *component;
	struct snd_soc_pcm_runtime *rtd;
	int i, ret, order;

	for_each_comp_order(order) {
		for_each_card_rtds(card, rtd) {
			for_each_rtd_components(rtd, i, component) {
				if (component->driver->probe_order != order)
					continue;

				ret = soc_probe_component(card, component);
				if (ret < 0)
					return ret;
			}
		}
	}

	return 0;
}

ここで使用されるfor_each_comp_order()マクロ定義 (located )include/sound/soc-component.hは次のとおりです。

#define SND_SOC_COMP_ORDER_FIRST	-2
#define SND_SOC_COMP_ORDER_EARLY	-1
#define SND_SOC_COMP_ORDER_NORMAL	 0
#define SND_SOC_COMP_ORDER_LATE		 1
#define SND_SOC_COMP_ORDER_LAST		 2

#define for_each_comp_order(order)		\
	for (order  = SND_SOC_COMP_ORDER_FIRST;	\
	     order <= SND_SOC_COMP_ORDER_LAST;	\
	     order++)

Linux カーネル ASoC ユニバーサル DMA エンジン ドライバーの動作

汎用 DMA エンジン ドライバーは次の操作を提供します。

static const struct snd_soc_component_driver dmaengine_pcm_component = {
	.name		= SND_DMAENGINE_PCM_DRV_NAME,
	.probe_order	= SND_SOC_COMP_ORDER_LATE,
	.open		= dmaengine_pcm_open,
	.close		= dmaengine_pcm_close,
	.hw_params	= dmaengine_pcm_hw_params,
	.trigger	= dmaengine_pcm_trigger,
	.pointer	= dmaengine_pcm_pointer,
	.pcm_construct	= dmaengine_pcm_new,
};

static const struct snd_soc_component_driver dmaengine_pcm_component_process = {
	.name		= SND_DMAENGINE_PCM_DRV_NAME,
	.probe_order	= SND_SOC_COMP_ORDER_LATE,
	.open		= dmaengine_pcm_open,
	.close		= dmaengine_pcm_close,
	.hw_params	= dmaengine_pcm_hw_params,
	.trigger	= dmaengine_pcm_trigger,
	.pointer	= dmaengine_pcm_pointer,
	.copy_user	= dmaengine_copy_user,
	.pcm_construct	= dmaengine_pcm_new,
};

これらの操作のうち、最も早く呼び出されるのはpcm_construct操作、つまりdmaengine_pcm_new()関数です。マシンクラスドライバーでは、devm_snd_soc_register_card()サウンドカードを登録する関数を呼び出しますが、この関数ではsnd_soc_register_card()-> snd_soc_bind_card()-> soc_init_pcm_runtime()-> soc_new_pcm()->という呼び出し処理がありsnd_soc_pcm_component_new()snd_soc_pcm_component_new()関数が各種struct snd_soc_component_driver操作を行いますpcm_constructsnd_soc_pcm_component_new()関数定義 (located sound/soc/soc-component.c) は次のとおりです。

int snd_soc_pcm_component_new(struct snd_soc_pcm_runtime *rtd)
{
	struct snd_soc_component *component;
	int ret;
	int i;

	for_each_rtd_components(rtd, i, component) {
		if (component->driver->pcm_construct) {
			ret = component->driver->pcm_construct(component, rtd);
			if (ret < 0)
				return soc_component_ret(component, ret);
		}
	}

	return 0;
}

ユニバーサル DMA エンジン ドライバーのpcm_construct操作関数に戻るとdmaengine_pcm_new()、この関数はsound/soc/soc-generic-dmaengine-pcm.c次のように定義 (配置) されます。

static int dmaengine_pcm_new(struct snd_soc_component *component,
			     struct snd_soc_pcm_runtime *rtd)
{
	struct dmaengine_pcm *pcm = soc_component_to_pcm(component);
	const struct snd_dmaengine_pcm_config *config = pcm->config;
	struct device *dev = component->dev;
	struct snd_pcm_substream *substream;
	size_t prealloc_buffer_size;
	size_t max_buffer_size;
	unsigned int i;

	if (config && config->prealloc_buffer_size) {
		prealloc_buffer_size = config->prealloc_buffer_size;
		max_buffer_size = config->pcm_hardware->buffer_bytes_max;
	} else {
		prealloc_buffer_size = 512 * 1024;
		max_buffer_size = SIZE_MAX;
	}

	for_each_pcm_streams(i) {
		substream = rtd->pcm->streams[i].substream;
		if (!substream)
			continue;

		if (!pcm->chan[i] && config && config->chan_names[i])
			pcm->chan[i] = dma_request_slave_channel(dev,
				config->chan_names[i]);

		if (!pcm->chan[i] && (pcm->flags & SND_DMAENGINE_PCM_FLAG_COMPAT)) {
			pcm->chan[i] = dmaengine_pcm_compat_request_channel(
				component, rtd, substream);
		}

		if (!pcm->chan[i]) {
			dev_err(component->dev,
				"Missing dma channel for stream: %d\n", i);
			return -EINVAL;
		}

		snd_pcm_set_managed_buffer(substream,
				SNDRV_DMA_TYPE_DEV_IRAM,
				dmaengine_dma_dev(pcm, substream),
				prealloc_buffer_size,
				max_buffer_size);

		if (!dmaengine_pcm_can_report_residue(dev, pcm->chan[i]))
			pcm->flags |= SND_DMAENGINE_PCM_FLAG_NO_RESIDUE;

		if (rtd->pcm->streams[i].pcm->name[0] == '\0') {
			strscpy_pad(rtd->pcm->streams[i].pcm->name,
				    rtd->pcm->streams[i].pcm->id,
				    sizeof(rtd->pcm->streams[i].pcm->name));
		}
	}

	return 0;
}

この関数は、再生および記録用の DMA チャネルにそれぞれ適用され、ユーザー空間アプリケーション、カーネル ALSA/ASoc フレームワーク、およびハードウェア デバイス間のデータ交換用に DMA バッファを割り当てます。snd_pcm_set_managed_buffer()DMA バッファを割り当てる機能。snd_pcm_set_managed_buffer()関数定義 (located sound/core/pcm_memory.c) は次のとおりです。

static void preallocate_pages(struct snd_pcm_substream *substream,
			      int type, struct device *data,
			      size_t size, size_t max, bool managed)
{
	if (snd_BUG_ON(substream->dma_buffer.dev.type))
		return;

	substream->dma_buffer.dev.type = type;
	substream->dma_buffer.dev.dev = data;

	if (size > 0 && preallocate_dma && substream->number < maximum_substreams)
		preallocate_pcm_pages(substream, size);

	if (substream->dma_buffer.bytes > 0)
		substream->buffer_bytes_max = substream->dma_buffer.bytes;
	substream->dma_max = max;
	if (max > 0)
		preallocate_info_init(substream);
	if (managed)
		substream->managed_buffer_alloc = 1;
}
 . . . . . .
void snd_pcm_set_managed_buffer(struct snd_pcm_substream *substream, int type,
				struct device *data, size_t size, size_t max)
{
	preallocate_pages(substream, type, data, size, max, true);
}
EXPORT_SYMBOL(snd_pcm_set_managed_buffer);

open操作dmaengine_pcm_open()関数は、データ送信前の準備作業を完了する関数であり、次のように定義されます。

static int
dmaengine_pcm_set_runtime_hwparams(struct snd_soc_component *component,
				   struct snd_pcm_substream *substream)
{
	struct snd_soc_pcm_runtime *rtd = asoc_substream_to_rtd(substream);
	struct dmaengine_pcm *pcm = soc_component_to_pcm(component);
	struct device *dma_dev = dmaengine_dma_dev(pcm, substream);
	struct dma_chan *chan = pcm->chan[substream->stream];
	struct snd_dmaengine_dai_dma_data *dma_data;
	struct snd_pcm_hardware hw;

	if (rtd->num_cpus > 1) {
		dev_err(rtd->dev,
			"%s doesn't support Multi CPU yet\n", __func__);
		return -EINVAL;
	}

	if (pcm->config && pcm->config->pcm_hardware)
		return snd_soc_set_runtime_hwparams(substream,
				pcm->config->pcm_hardware);

	dma_data = snd_soc_dai_get_dma_data(asoc_rtd_to_cpu(rtd, 0), substream);

	memset(&hw, 0, sizeof(hw));
	hw.info = SNDRV_PCM_INFO_MMAP | SNDRV_PCM_INFO_MMAP_VALID |
			SNDRV_PCM_INFO_INTERLEAVED;
	hw.periods_min = 2;
	hw.periods_max = UINT_MAX;
	hw.period_bytes_min = 256;
	hw.period_bytes_max = dma_get_max_seg_size(dma_dev);
	hw.buffer_bytes_max = SIZE_MAX;
	hw.fifo_size = dma_data->fifo_size;

	if (pcm->flags & SND_DMAENGINE_PCM_FLAG_NO_RESIDUE)
		hw.info |= SNDRV_PCM_INFO_BATCH;

	/**
	 * FIXME: Remove the return value check to align with the code
	 * before adding snd_dmaengine_pcm_refine_runtime_hwparams
	 * function.
	 */
	snd_dmaengine_pcm_refine_runtime_hwparams(substream,
						  dma_data,
						  &hw,
						  chan);

	return snd_soc_set_runtime_hwparams(substream, &hw);
}

static int dmaengine_pcm_open(struct snd_soc_component *component,
			      struct snd_pcm_substream *substream)
{
	struct dmaengine_pcm *pcm = soc_component_to_pcm(component);
	struct dma_chan *chan = pcm->chan[substream->stream];
	int ret;

	ret = dmaengine_pcm_set_runtime_hwparams(component, substream);
	if (ret)
		return ret;

	return snd_dmaengine_pcm_open(substream, chan);
}

snd_soc_dai_get_dma_data()ここでは、タイプ のstruct snd_dmaengine_dai_dma_dataDMA データを取得するために関数が呼び出されます。これは、ユニバーサル DMA エンジン ドライバーと I2S などの DAI ドライバーの間の規則です。つまり、DMAprobeデータは、次のように DAI ドライバーの操作で設定する必要があります。

struct i2s_dev {
	struct device *dev;
 . . . . . .
	struct snd_dmaengine_dai_dma_data capture_dma_data;
	struct snd_dmaengine_dai_dma_data playback_dma_data;
 . . . . . .
}
 . . . . . .
static int i2s_dai_probe(struct snd_soc_dai *dai)
{
	struct i2s_dev *i2s = snd_soc_dai_get_drvdata(dai);

	snd_soc_dai_init_dma_data(dai,
		i2s->has_playback ? &i2s->playback_dma_data : NULL,
		i2s->has_capture  ? &i2s->capture_dma_data  : NULL);

	return 0;
}
 . . . . . .
static int i2s_init_dai(struct i2s_dev *i2s, struct resource *res,
								 struct snd_soc_dai_driver **dp)
{
 . . . . . .
		i2s->playback_dma_data.addr = res->start + I2S_TXFIFODATA;
		i2s->playback_dma_data.addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES;
		i2s->playback_dma_data.maxburst = 8;

 . . . . . .
		i2s->capture_dma_data.addr = res->start + I2S_RXFIFODATA;
		i2s->capture_dma_data.addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES;
		i2s->capture_dma_data.maxburst = 8;
 . . . . . .
}

dmaengine_pcm_open()この関数は主に、ストリームのランタイム ハードウェア パラメーターを設定します。

その他の操作については、現時点ではあまり説明しません。

終わり。

おすすめ

転載: blog.csdn.net/tq08g2z/article/details/131991448