NLP | LLM に基づくテキスト分類タスク

競合リンク: Xunfei オープン プラットフォーム

出典: DataWhale AI サマー キャンプ 3 (NLP)

 

Robertaベース(BERTの改善)

①Roberta は事前学習段階で次の文を予測しなかった ( NSP )

②ダイナミックマスクを採用文字レベル表現単語レベル表現を用いたハイブリッドテキストエンコーディングを採用。

論文: https://arxiv.org/pdf/1907.11692.pdf

 

DataWhale トップラインの改善:

  特徴 1: 平均プーリング MeanPooling (768 次元) -> 完全接続層 fc (128 次元)

  特徴 2: 最後の隠れ層 Last_hidden (768 次元) -> 全結合層 fc (128 次元)

 

動作モード: Alibaba Cloud Machine Learning Platform PAI-Interactive Modeling DSW

ミラーの選択: pytorch :1.12-gpu-py39-cu113-ubuntu20.04

コードをアップロードし、コマンドを解凍します。

unzip [filename]

py スクリプト コマンドを実行します(ネットワーク エラーが発生した場合は、もう一度実行してください)。
 

python [python_filename]

① データ処理モジュール

必要なモジュールをインポートします。

from transformers import AutoTokenizer  #文本分词
import pandas as pd
import numpy as np
from tqdm import tqdm  #显示进度条
import torch
from torch.nn.utils.rnn import pad_sequence
#填充序列,保证向量中各序列维度的大小一样

MAX_LENGTH = 128  #定义最大序列长度为128

トレーニングセットの製作:

def get_train(model_name, model_dict):
    model_index = model_dict[model_name]  # 获取模型索引
    train = pd.read_csv('./dataset/train.csv') #读取训练数据为DataFrame
    train['content'] = train['title'] + train['author'] + train['abstract']  
    #将标题、作者和摘要拼接为训练内容
    tokenizer = AutoTokenizer.from_pretrained(model_name, max_length=MAX_LENGTH, cache_dir=f'./premodels/{model_name}_saved')  # 实例化分词器对象

    # 通过分词器对训练数据进行分词,并获取输入ID、注意力掩码和标记类型ID(这个可有可无)
    input_ids_list, attention_mask_list, token_type_ids_list = [], [], []
    y_train = []  # 存储训练数据的标签
    
    for i in tqdm(range(len(train['content']))):  # 遍历训练数据
        sample = train['content'][i]  # 获取样本内容
        tokenized = tokenizer(sample, truncation='longest_first') 
        #分词处理,【最长优先方式】截断
        input_ids, attention_mask = tokenized['input_ids'], tokenized['attention_mask']  # 获取输入ID和注意力掩码
        input_ids, attention_mask = torch.tensor(input_ids), torch.tensor(attention_mask)  # 转换为PyTorch张量
        try:
            token_type_ids = tokenized['token_type_ids']  # 获取标记类型ID
            token_type_ids = torch.tensor(token_type_ids) # 转换为PyTorch张量
        except:
            token_type_ids = input_ids #异常处理
        input_ids_list.append(input_ids)  # 将输入ID添加到列表中
        attention_mask_list.append(attention_mask)  # 将注意力掩码添加到列表中
        token_type_ids_list.append(token_type_ids)  # 将标记类型ID添加到列表中
        y_train.append(train['label'][i])  # 将训练数据的标签添加到列表中
    # 保存 对下述对象进行填充,保证向量中各序列维度的大小一样,生成张量
   # 输入      ID input_ids_tensor、
   # 注意力掩码 attention_mask_tensor
   # 标记类型ID token_type_ids_tensor
    input_ids_tensor = pad_sequence(input_ids_list, batch_first=True, padding_value=0)
    attention_mask_tensor = pad_sequence(attention_mask_list, batch_first=True, padding_value=0)
    token_type_ids_tensor = pad_sequence(token_type_ids_list, batch_first=True, padding_value=0) 
    x_train = torch.stack([input_ids_tensor, attention_mask_tensor, token_type_ids_tensor], dim=1)  # 将输入张量堆叠为一个张量
    x_train = x_train.numpy()   # 转换为NumPy数组(ndarray)
    np.save(f'./models_input_files/x_train{model_index}.npy', x_train) #保存训练数据
    y_train = np.array(y_train) # 转换为NumPy数组(ndarray)
    np.save(f'./models_input_files/y_train{model_index}.npy', y_train) #保存标签数据

テストセットの製作:

def get_test(model_name, model_dict):
    model_index = model_dict[model_name]  # 获取模型索引
    test = pd.read_csv('./dataset/testB.csv')  # 从CSV文件中读取测试数据为DataFrame
    test['content'] = test['title'] + ' ' + test['author'] + ' ' + test['abstract']  
    # 将标题、作者和摘要拼接为测试内容
    tokenizer = AutoTokenizer.from_pretrained(model_name, max_length=MAX_LENGTH,cache_dir=f'./premodels/{model_name}_saved')  # 实例化分词器对象
    # 通过分词器对测试数据进行分词,创建输入ID、注意力掩码和标记类型ID列表进行记录(可有可无)
    input_ids_list, attention_mask_list, token_type_ids_list = [], [], []
    
    for i in tqdm(range(len(test['content']))):  # 遍历测试数据
        sample = test['content'][i]  # 获取样本内容
        tokenized = tokenizer(sample, truncation='longest_first')  
        # 分词处理,使用最长优先方式截断
        input_ids, attention_mask = tokenized['input_ids'], tokenized['attention_mask']  # 获取输入ID和注意力掩码
        input_ids, attention_mask = torch.tensor(input_ids), torch.tensor(attention_mask)  # 转换为PyTorch张量
        try:
            token_type_ids = tokenized['token_type_ids']  # 获取标记类型ID
            token_type_ids = torch.tensor(token_type_ids)  # 转换为PyTorch张量
        except:
            token_type_ids = input_ids #异常处理
        input_ids_list.append(input_ids)  # 将输入ID添加到列表中
        attention_mask_list.append(attention_mask)  # 将注意力掩码添加到列表中
        token_type_ids_list.append(token_type_ids)  # 将标记类型ID添加到列表中
    
    # 保存,对输入ID、注意力掩码、标记类型ID进行填充,保证向量中各序列维度的大小一样,生成张量
    input_ids_tensor = pad_sequence(input_ids_list, batch_first=True, padding_value=0) 
    attention_mask_tensor = pad_sequence(attention_mask_list, batch_first=True, padding_value=0)
    token_type_ids_tensor = pad_sequence(token_type_ids_list, batch_first=True, padding_value=0) 
    x_test = torch.stack([input_ids_tensor, attention_mask_tensor, token_type_ids_tensor], dim=1)  # 将输入张量堆叠为一个张量
    x_test = x_test.numpy()  # 转换为NumPy数组
    np.save(f'./models_input_files/x_test{model_index}.npy', x_test)  # 保存测试数据

トレーニング セットと検証セットを分割します。

def split_train(model_name, model_dict):
    # 训练集:验证集 = 9 : 1
    split_rate = 0.90

    # 处理样本内容
    model_index = model_dict[model_name]  # 获取模型索引
    train = np.load(f'./models_input_files/x_train{model_index}.npy')  # 加载训练数据
    state = np.random.get_state()  # 获取随机数状态,保证样本间的随机是可重复的
    # 或者也可以设置经典随机种子random_seed=42
    np.random.shuffle(train)  # 随机打乱训练数据,数据洗牌
    val = train[int(train.shape[0] * split_rate):]  # 划分验证集 validation
    train = train[:int(train.shape[0] * split_rate)]  # 划分训练集 train set
    np.save(f'./models_input_files/x_train{model_index}.npy', train)  # 保存训练集
    np.save(f'./models_input_files/x_val{model_index}.npy', val)  # 保存验证集

    train = np.load(f'./models_input_files/y_train{model_index}.npy')  # 加载标签数据
    
    # 处理样本标签
    np.random.set_state(state)  # 恢复随机数状态,让样本标签的随机可重复
    np.random.shuffle(train)  # 随机打乱标签数据
    val = train[int(train.shape[0] * split_rate):]  # 划分验证集 validation
    train = train[:int(train.shape[0] * split_rate)]  # 划分训练集 train set
    np.save(f'./models_input_files/y_train{model_index}.npy', train)  # 保存训练集标签
    np.save(f'./models_input_files/y_val{model_index}.npy', val)  # 保存验证集标签
    
    print('split done.')

データ処理の主な機能:

if __name__ == '__main__':
    model_dict = {'xlm-roberta-base':1,
                  'roberta-base':2, 
                  'bert-base-uncased':3, 
                  'microsoft/BiomedNLP-PubMedBERT-base-uncased-abstract-fulltext':4, 
                  'dmis-lab/biobert-base-cased-v1.2':5, 
                  'marieke93/MiniLM-evidence-types':6,
                  'microsoft/MiniLM-L12-H384-uncased':7, 
                  'cambridgeltl/SapBERT-from-PubMedBERT-fulltext':8,
                  'microsoft/BiomedNLP-PubMedBERT-base-uncased-abstract':9,
                  'microsoft/BiomedNLP-PubMedBERT-large-uncased-abstract':10}
    model_name = 'roberta-base'
    get_train(model_name, model_dict) #读取训练集
    get_test(model_name, model_dict)  #读取测试集
    split_train(model_name, model_dict) #划分训练集和测试集

②モデルトレーニング

必要なモジュールをインポートします。

import numpy as np
import torch
import torch.nn as nn
from sklearn import metrics
import os
import time
from transformers import AutoModel, AutoConfig
# 导入AutoModel和AutoConfig类,用于加载预训练模型
from tqdm import tqdm  #显示进度条

ハイパーパラメータ クラス (変更可能なすべてのハイパーパラメータ):

class opt:
    seed               = 42 # 随机种子
    batch_size         = 16 # 批处理大小
    set_epoch          = 5  # 训练轮数 
    early_stop         = 5  # 提前停止epoch数
    learning_rate      = 1e-5 # 学习率
    weight_decay       = 2e-6 # 权重衰减,L2正则化
    device             = torch.device("cuda" if torch.cuda.is_available() else "cpu") # 选择设备,GPU或CPU
    gpu_num            = 1 # GPU个数
    use_BCE            = False # 是否使用BCE损失函数
    models             = ['xlm-roberta-base', 'roberta-base', 'bert-base-uncased',  
                          'microsoft/BiomedNLP-PubMedBERT-base-uncased-abstract-fulltext', 'dmis-lab/biobert-base-cased-v1.2', 'marieke93/MiniLM-evidence-types',  
                          'microsoft/MiniLM-L12-H384-uncased','cambridgeltl/SapBERT-from-PubMedBERT-fulltext', 'microsoft/BiomedNLP-PubMedBERT-base-uncased-abstract',
                          'microsoft/BiomedNLP-PubMedBERT-large-uncased-abstract'] # 模型名称列表
    model_index        = 2 # 根据上面选择使用的模型,这里填对应的模型索引
    model_name         = models[model_index-1] # 使用的模型名称
    continue_train     = False # 是否继续训练
    show_val           = False # 是否显示验证过程

モデルクラスを定義します。

# 定义模型
class MODEL(nn.Module):
    def __init__(self, model_index):
        super(MODEL, self).__init__()
        # 若是第一次下载权重,则下载至同级目录的./premodels/内,以防占主目录的存储空间
        self.model = AutoModel.from_pretrained(opt.models[model_index-1], cache_dir='./premodels/'+opt.models[model_index-1]+'_saved', from_tf=False) # 加载预训练语言模型
        # 加载模型配置,可以直接获得模型最后一层的维度,而不需要手动修改
        config = AutoConfig.from_pretrained(opt.models[model_index-1], cache_dir='./premodels/'+opt.models[model_index-1]+'_saved') # 获取配置
        last_dim = config.hidden_size # 最后一层的维度
        if opt.use_BCE:out_size = 1 # 损失函数如果使用BCE,则输出大小为1
        else          :out_size = 2 # 否则则使用CE,输出大小为2
        feature_size = 128 # 设置特征的维度大小
        self.fc1 = nn.Linear(last_dim, feature_size) # 全连接层1
        self.fc2 = nn.Linear(last_dim, feature_size) # 全连接层2
        self.classifier = nn.Linear(feature_size, out_size) # 分类器
        self.dropout = nn.Dropout(0.3) # Dropout层

            
    def forward(self, x): #BP
        input_ids, attention_mask, token_type_ids = x[:,0],x[:,1],x[:,2] # 获取输入
        x = self.model(input_ids, attention_mask) # 通过模型
        
        all_token     = x[0] # 全部序列分词的表征向量
        pooled_output = x[1] # [CLS]的表征向量+一个全连接层+Tanh激活函数

        feature1 = all_token.mean(dim=1) # 对全部序列分词的表征向量取均值
        feature1 = self.fc1(feature1)    # 再输入进全连接层,得到feature1
        feature2 = pooled_output      # [CLS]的表征向量+一个全连接层+Tanh激活函数
        feature2 = self.fc2(feature2) # 再输入进全连接层,得到feature2
        feature  = 0.5*feature1 + 0.5*feature2 # 加权融合特征
        feature  = self.dropout(feature) # Dropout

        x  = self.classifier(feature) # 分类
        return x

 

データ読み込み:

def load_data():
    #数据集路径
    train_data_path     = f'models_input_files/x_train{model_index}.npy'
    train_label_path    = f'models_input_files/y_train{model_index}.npy'
    val_data_path       = f'models_input_files/x_val{model_index}.npy'# 验证集
    val_label_path      = f'models_input_files/y_val{model_index}.npy'# 验证集标签
    test_data_path      = f'models_input_files/x_test{model_index}.npy'# 测试集输入
    
    #数据集读取
    #data=torch.tensor([path],allow_pickle=True).tolist())
    train_data          = torch.tensor(np.load(train_data_path  , allow_pickle=True).tolist())
    train_label         = torch.tensor(np.load(train_label_path  , allow_pickle=True).tolist()).long() 
    val_data            = torch.tensor(np.load(val_data_path  , allow_pickle=True).tolist()) 
    val_label           = torch.tensor(np.load(val_label_path  , allow_pickle=True).tolist()).long()
    test_data           = torch.tensor(np.load(test_data_path  , allow_pickle=True).tolist()) 

    #构造训练集、验证集、测试集
    train_dataset       = torch.utils.data.TensorDataset(train_data  , train_label) 
    val_dataset         = torch.utils.data.TensorDataset(val_data  , val_label) 
    test_dataset        = torch.utils.data.TensorDataset(test_data) 
    
    return train_dataset, val_dataset, test_dataset # 返回数据集

モデルの事前トレーニング:

def model_pretrain(model_index, train_loader, val_loader):
    # 超参数设置
    set_epoch          = opt.set_epoch  # 训练轮数
    early_stop         = opt.early_stop # 提前停止epoch数
    learning_rate      = opt.learning_rate # 学习率
    weight_decay       = opt.weight_decay  # 权重衰减
    device             = opt.device  # 设备 
    gpu_num            = opt.gpu_num # GPU个数
    continue_train     = opt.continue_train # 是否继续训练
    model_save_dir     = 'checkpoints' # 模型保存路径
    
    # 是否要继续训练,若是,则加载模型进行训练;若否,则跳过训练,直接对测试集进行推理
    if not continue_train:
        # 判断最佳模型是否已经存在,若存在则直接读取,若不存在则进行训练
        if os.path.exists(f'checkpoints/best_model{model_index}.pth'): 
            best_model = MODEL(model_index)
            best_model.load_state_dict(torch.load(f'checkpoints/best_model{model_index}.pth')) # 加载模型
            return best_model
        else:
            pass
            

    # 模型初始化
    model = MODEL(model_index).to(device) 
    if continue_train:
        model.load_state_dict(torch.load(f'checkpoints/best_model{model_index}.pth')) # 继续训练加载模型

    # 优化器初始化
    if device    != 'cpu' and gpu_num > 1:  # 多张显卡
        optimizer = torch.optim.AdamW(model.module.parameters(), lr=learning_rate, weight_decay=weight_decay)
        optimizer = torch.nn.DataParallel(optimizer, device_ids=list(range(gpu_num))) # 多GPU
    else: # 单张显卡
        optimizer = torch.optim.AdamW(model.parameters(), lr=learning_rate, weight_decay=weight_decay) # 单GPU
    
    # 损失函数初始化
    if opt.use_BCE:
        loss_func = nn.BCEWithLogitsLoss() # BCE损失
    else:
        loss_func = nn.CrossEntropyLoss() # 交叉熵损失(CE)

    # 模型训练
    best_epoch         = 0 # 最佳epoch
    best_train_loss    = 100000 # 最佳训练损失
    train_acc_list     = [] # 训练准确率列表
    train_loss_list    = [] # 训练损失列表
    val_acc_list       = [] # 验证准确率列表 
    val_loss_list      = [] # 验证损失列表
    start_time         = time.time() # 训练开始时间

    for epoch in range(set_epoch): # 轮数
        model.train() # 模型切换到训练模式
        train_loss = 0 # 训练损失
        train_acc = 0 # 训练准确率
        for x, y in tqdm(train_loader): # 遍历训练集
            # 训练前先将数据放到GPU上
            x        = x.to(device)
            y        = y.to(device)
            outputs  = model(x) # 前向传播
            
            if opt.use_BCE: # BCE损失
                loss = loss_func(outputs, y.float().unsqueeze(1)) 
            else: # 交叉熵损失
                loss = loss_func(outputs, y)
            train_loss += loss.item() # 累加训练损失
            optimizer.zero_grad() # 清空梯度
            loss.backward() # 反向传播

            if device != 'cpu' and gpu_num > 1: # 多GPU更新
                optimizer.module.step()  
            else:
                optimizer.step() # 单GPU更新
            
            if not opt.use_BCE: # 非BCE损失
                _, predicted = torch.max(outputs.data, 1) # 预测结果
            else:
                predicted = (outputs > 0.5).int() # 预测结果
                predicted = predicted.squeeze(1) 
            train_acc   += (predicted == y).sum().item() # 计算训练准确率
            
        average_mode = 'binary'
        # 计算F1、Precision、Recall
        train_f1     = metrics.f1_score(y.cpu(), predicted.cpu(), average=average_mode)
        train_pre    = metrics.precision_score(y.cpu(), predicted.cpu(), average=average_mode)
        train_recall = metrics.recall_score(y.cpu(), predicted.cpu(), average=average_mode)


        train_loss /= len(train_loader) # 平均所有步数的训练损失作为一个epoch的训练损失
        train_acc  /= len(train_loader.dataset) # 平均所有步数训练准确率作为一个epoch的准确率
        train_acc_list.append(train_acc)   # 添加训练准确率
        train_loss_list.append(train_loss) # 添加训练损失

        print('-'*50)
        print('Epoch [{}/{}]\n Train Loss: {:.4f}, Train Acc: {:.4f}'.format(epoch + 1, set_epoch, train_loss, train_acc))
        print('Train-f1: {:.4f}, Train-precision: {:.4f} Train-recall: {:.4f}'.format(train_f1, train_pre, train_recall))

        if opt.show_val: # 显示验证过程
            # 验证
            model.eval() # 模型切换到评估模式
            val_loss = 0 # 验证损失
            val_acc = 0 # 验证准确率
    
            for x, y in tqdm(val_loader): # 遍历验证集
                # 训练前先将数据放到GPU上
                x = x.to(device) 
                y = y.to(device)
                outputs = model(x) # 前向传播
                if opt.use_BCE: # BCE损失
                    loss = loss_func(outputs, y.float().unsqueeze(1))
                else: # 交叉熵损失  
                    loss = loss_func(outputs, y)
                
                val_loss += loss.item() # 累加验证损失
                if not opt.use_BCE: # 非BCE损失
                    _, predicted = torch.max(outputs.data, 1) 
                else:
                    predicted = (outputs > 0.5).int() # 预测结果
                    predicted = predicted.squeeze(1)
                val_acc += (predicted == y).sum().item() # 计算验证准确率

            #计算F1、Precision、Recall
            val_f1     = metrics.f1_score(y.cpu(), predicted.cpu(), average=average_mode)
            val_pre    = metrics.precision_score(y.cpu(), predicted.cpu(), average=average_mode)
            val_recall = metrics.recall_score(y.cpu(), predicted.cpu(), average=average_mode)
    
            val_loss /= len(val_loader) # 平均验证损失
            val_acc /= len(val_loader.dataset) # 平均验证准确率
            val_acc_list.append(val_acc)   # 添加验证准确率
            val_loss_list.append(val_loss) # 添加验证损失
            print('\nVal Loss: {:.4f}, Val Acc: {:.4f}'.format(val_loss, val_acc))
            print('Val-f1: {:.4f}, Val-precision: {:.4f} Val-recall: {:.4f}'.format(val_f1, val_pre, val_recall))

        if train_loss < best_train_loss: # 更新最佳训练损失
            best_train_loss = train_loss
            best_epoch = epoch + 1
            if device == 'cuda' and gpu_num > 1: # 多GPU保存模型
                torch.save(model.module.state_dict(), f'{model_save_dir}/best_model{model_index}.pth')
            else:
                torch.save(model.state_dict(), f'{model_save_dir}/best_model{model_index}.pth') # 单GPU保存模型
        
        # 提前停止判断
        if epoch+1 - best_epoch == early_stop:  
            print(f'{early_stop} epochs later, the loss of the validation set no longer continues to decrease, so the training is stopped early.')
            end_time = time.time()
            print(f'Total time is {end_time - start_time}s.')
            break

    best_model = MODEL(model_index) # 初始化最佳模型
    best_model.load_state_dict(torch.load(f'checkpoints/best_model{model_index}.pth')) # 加载模型参数
    return best_model # 返回最佳模型

モデル推論:

def model_predict(model, model_index, test_loader):
    device = 'cuda'
    model.to(device) # 模型到GPU
    model.eval()  # 切换到评估模式

    test_outputs = None
    with torch.no_grad():  # 禁用梯度计算
        for i, data in enumerate(tqdm(test_loader)):
            data = data[0].to(device) # 测试数据到GPU
            outputs = model(data) # 前向传播
            if i == 0: 
                test_outputs = outputs # 第一个batch直接赋值
            else:
                test_outputs = torch.cat([test_outputs, outputs], dim=0) 
                # 其余batch拼接

            del data, outputs  # 释放不再需要的Tensor

    # 保存预测结果    
    if not opt.use_BCE: 
        test_outputs = torch.softmax(test_outputs, dim=1) # 转换为概率
    torch.save(test_outputs, f'./models_prediction/{model_index}_prob.pth') 
    # 保存概率

モデルトレーニングの主な機能:

def run(model_index):
    # 固定随机种子
    seed = opt.seed  
    torch.seed = seed
    np.random.seed(seed)
    torch.manual_seed(seed)
    torch.cuda.manual_seed(seed)
    torch.cuda.manual_seed_all(seed)
    torch.backends.cudnn.deterministic = True

    train_dataset, val_dataset, test_dataset = load_data() # 加载数据集
    # 打印数据集信息
    print('-数据集信息:')
    print(f'-训练集样本数:{len(train_dataset)},测试集样本数:{len(test_dataset)}')
    train_labels = len(set(train_dataset.tensors[1].numpy()))
    
    # 查看训练样本类别均衡状况
    print(f'-训练集的标签种类个数为:{train_labels}') 
    numbers = [0] * train_labels
    for i in train_dataset.tensors[1].numpy():
        numbers[i] += 1
    print(f'-训练集各种类样本的个数:')
    for i in range(train_labels):
        print(f'-{i}的样本个数为:{numbers[i]}')

    batch_size   = opt.batch_size # 批处理大小
    # 构建DataLoader
    train_loader = torch.utils.data.DataLoader(dataset=train_dataset, batch_size=batch_size, shuffle=True) 
    val_loader   = torch.utils.data.DataLoader(dataset=val_dataset,   batch_size=batch_size, shuffle=True)
    test_loader  = torch.utils.data.DataLoader(dataset=test_dataset,  batch_size=batch_size, shuffle=False)

    best_model   = model_pretrain(model_index, train_loader, val_loader)

    # 使用验证集评估模型
    model_predict(best_model, model_index, test_loader) # 模型推理

if __name__ == '__main__':
    model_index = opt.model_index # 获取模型索引
    run(model_index) # 运行程序

③モデル評価

import torch
import pandas as pd
from models_training import MODEL  # 从本地文件models_training.py中导入MODEL类
from tqdm import tqdm
from sklearn.metrics import classification_report
import numpy as np

# 推理
def inference(model_indexs, use_BCE):
    device = 'cuda'  # 设备选择为cuda
    for model_index in model_indexs:
        # 加载模型
        model = MODEL(model_index).to(device)  # 创建MODEL类的实例,并将模型移至设备(device)
        model.load_state_dict(torch.load(f'checkpoints/best_model{model_index}.pth'))  # 加载模型的权重参数
        model.eval()  # 切换到评估模式
        # 加载val数据
        val_data_path = f'models_input_files/x_val{model_index}.npy'  # val数据的路径
        val_data = torch.tensor(np.load(val_data_path, allow_pickle=True).tolist())  # 加载val数据,并转换为Tensor格式
        val_dataset = torch.utils.data.TensorDataset(val_data)  # 创建val数据集
        val_loader  = torch.utils.data.DataLoader(dataset=val_dataset, batch_size=32, shuffle=False)  # 创建val数据的数据加载器
        val_outputs = None  # 初始化val_outputs变量
        with torch.no_grad():  # 禁用梯度计算
            for i, data in enumerate(tqdm(val_loader)):  # 遍历val_loader,显示进度条
                data = data[0].to(device)  # 将数据移至GPU
                outputs = model(data)  # 模型推理,获取输出
                if i == 0:
                    val_outputs = outputs  # 若为第一次迭代,直接赋值给val_outputs
                else:
                    val_outputs = torch.cat([val_outputs, outputs], dim=0)  
                   # 否则在dim=0上拼接val_outputs和outputs

                del data, outputs  # 释放不再需要的Tensor对象

        # 输出预测概率
        if not use_BCE:
            val_outputs = torch.softmax(val_outputs, dim=1)  # 对val_outputs进行softmax操作
        torch.save(val_outputs, f'evaluate_prediction/{model_index}_prob.pth')  # 保存预测概率结果


def run(model_indexs, use_BCE):
    # 读取所有的model_prob.pth,并全加在一起
    avg_pred = None  # 初始化avg_pred变量
    for i in model_indexs:
        pred = torch.load(f'evaluate_prediction/{i}_prob.pth').data  
        # 加载预测概率结果
        if use_BCE:
            # 选取大于0.5的作为预测结果
            pred = (pred > 0.5).int()  # 将大于0.5的值转换为整数(0或1)
            pred = pred.reshape(-1)  # 将预测结果进行形状重塑
        else:
            # 选取最大的概率作为预测结果
            pred = torch.argmax(pred, dim=1)  # 获取最大概率的索引作为预测结果
        pred = pred.cpu().numpy()  # 将预测结果转移到CPU上,并转换为NumPy数组

        # to_evaluate
        # 读取真实标签
        val_label_path = f'models_input_files/y_val{i}.npy'  # 真实标签的路径
        y_true = np.load(val_label_path)  # 加载真实标签

        # 分类报告
        print(f'model_index = {i}:')
        print(classification_report(y_true, pred, digits=4))  
        # 打印分类报告,包括精确度、召回率等指标

        zero_acc = 0; one_acc = 0 # 初始化0类和1类的准确率
        zero_num = 0; one_num= 0  # 初始化0类和1类的样本数量
        for i in range(pred.shape[0]):
            if y_true[i] == 0:
                zero_num += 1  # 统计0类的样本数量
            elif y_true[i] == 1:
                one_num += 1  # 统计1类的样本数量
            if pred[i] == y_true[i]:
                if pred[i] == 0:
                    zero_acc += 1  # 统计0类的正确预测数量
                elif pred[i] == 1:
                    one_acc += 1  # 统计1类的正确预测数量

        zero = np.sum(pred == 0) / pred.shape[0]  # 计算预测为0类的样本占比
        zero_acc /= zero_num  # 计算0类的正确率
        print(f'预测0类占比:{zero}  0类正确率:{zero_acc}')
        one = np.sum(pred == 1) / pred.shape[0]  # 计算预测为1类的样本占比
        one_acc /= one_num  # 计算1类的正确率
        print(f'预测1类占比:{one}  1类正确率:{one_acc}')
        print('-' * 80)


if __name__ == '__main__':
    use_BCE = False  # 是否使用BCE损失函数的标志,这里我只用交叉熵CE,所以是False
    inference([2], use_BCE=use_BCE)  # 进行推理,传入模型索引和use_BCE标志
    model_indexs = [2]  # 模型索引列表
    run(model_indexs, use_BCE=use_BCE)  # 进行运行,传入模型索引和use_BCE标志

④ テストセットの推論

import torch
import pandas as pd
import warnings # 过滤警告
warnings.filterwarnings('ignore')

def run(model_indexs, use_BCE):
    # 记录模型数量
    model_num = len(model_indexs)
    # 读取所有的model_prob.pth,并全加在一起
    for i in model_indexs:
        # 加载模型在训练完成后对测试集推理所得的预测文件
        pred = torch.load(f'./models_prediction/{i}_prob.pth', map_location='cpu').data
        # 这里的操作是将每个模型对测试集推理的概率全加在一起
        if i == model_indexs[0]:
            avg_pred = pred
        else:
            avg_pred += pred
        
    # 取平均
    avg_pred /= model_num # 使用全加在一起的预测概率除以模型数量

    if use_BCE:
        # 选取概率大于0.5的作为预测结果
        pred = (avg_pred > 0.5).int()
        pred = pred.reshape(-1)
    else:
        # 后处理 - 根据标签数目的反馈,对预测阈值进行调整
        pred[:, 0][pred[:, 0]>0.001] = 1
        pred[:, 1][pred[:, 1]>0.999] = 1.2
        # 选取最大的概率作为预测结果
        pred = torch.argmax(avg_pred, dim=1)
    pred = pred.cpu().numpy()

    # to_submit
    # 读取test.csv文件
    test = pd.read_csv('./dataset/testB_submit_exsample.csv')

    # 开始写入预测结果
    for i in range(len(pred)):
        test['label'][i] = pred[i]

    print(test['label'].value_counts())
    # 保存为提交文件
    test.to_csv(f'submit.csv',index=False)

if __name__ == '__main__':
    run([2], use_BCE=False)
    # run([1,2,3,4,5,6,7,8,9,10], use_BCE=False)

 

モデル最適化のアイデア:

ハイパーパラメータ調整、最大シーケンス長調整、損失関数の変更、モデルパラメータのフリーズ

特徴量エンジニアリング、モデル統合、対照学習、ヒント学習サ

 

チャットGML2-6B

LLM: 自己回帰モデル

事前トレーニング => プロンプト、微調整 => RLHF 強化アライメント学習

 

LoRA 低ランク適応: 事前トレーニングされたモデルの重みパラメーターをフリーズします。元のモデル パラメーターをフリーズする場合は、モデルにネットワーク層を追加し、これらの新しいネットワーク層パラメーターのみをトレーニングします。

「命令 --> 」「入力: X」「出力: Y」

P-tuning v2 : 元の大規模言語モデルにいくつかの新しいパラメーターを追加します。これらの新しいパラメーターは、モデルが特定のタスクをよりよく理解し、処理するのに役立ちます。

アプリケーションの微調整: 業種別、パーソナライゼーション

 

Alibaba Cloud Pytorch 環境で、コードのクローンを作成し、chatglm2-6b モデルをダウンロードし、

依存関係をインストールし、トレーニング スクリプトを実行します。

xfg_train.sh

CUDA_VISIBLE_DEVICES=0 python src/train_bash.py \
    --model_name_or_path chatglm2-6b \ 本地模型的目录
    --stage sft \ 微调方法
    --use_v2 \ 使用glm2模型微调,默认值true
    --do_train \ 是否训练,默认值true
    --dataset paper_label \ 数据集名字
    --finetuning_type lora \ 
    --lora_rank 8 \  LoRA 微调中的秩大小
    --output_dir ./output/label_xfg \ 输出lora权重存放目录
    --per_device_train_batch_size 4 \ 用于训练的批处理大小
    --gradient_accumulation_steps 4 \ 梯度累加次数
    --lr_scheduler_type cosine \
    --logging_steps 10 \ 日志输出间隔
    --save_steps 1000 \ 断点保存间隔
    --learning_rate 5e-5 \ 学习率
    --num_train_epochs 4.0 \ 训练轮数
    --fp16 是否使用 fp16 半精度 默认值:False

データのインポート

import pandas as pd
train_df = pd.read_csv('./csv_data/train.csv')
testB_df = pd.read_csv('./csv_data/testB.csv')

データセットを作成する

res = [] #存储数据样本

for i in range(len(train_df)):# 遍历训练数据的每一行
    paper_item = train_df.loc[i] # 获取当前行的数据
    # 创建一个字典,包含LoRA的指令、输入和输出信息
    tmp = {
    "instruction": "Please judge whether it is a medical field paper according to the given paper title and abstract, output 1 or 0, the following is the paper title and abstract -->",
    "input": f"title:{paper_item[1]},abstract:{paper_item[3]}",
    "output": str(paper_item[5])
  }
    res.append(tmp) # 将字典添加到结果列表中


import json #用于保存数据集

# 将制作好的数据集保存到data目录下
with open('./data/paper_label.json', mode='w', encoding='utf-8') as f:
    json.dump(res, f, ensure_ascii=False, indent=4)

data/data_info.jsonを変更する

{
  "paper_label": {
    "file_name": "paper_label.json"
  }
}

予測のためにトレーニングされた LoRA 重みをロードします

from peft import PeftModel
from transformers import AutoTokenizer, AutoModel, GenerationConfig, AutoModelForCausalLM

# 定义预训练模型的路径
model_path = "../chatglm2-6b"
model = AutoModel.from_pretrained(model_path, trust_remote_code=True).half().cuda()
tokenizer = AutoTokenizer.from_pretrained(model_path, trust_remote_code=True)

# 加载 label lora权重
model = PeftModel.from_pretrained(model, './output/label_xfg').half()
model = model.eval()

# 使用加载的模型和分词器进行聊天,生成回复
response, history = model.chat(tokenizer, "你好", history=[])
response

予測機能:

def predict(text):
    # 使用加载的模型和分词器进行聊天,生成回复
    response, history = model.chat(tokenizer, f"Please judge whether it is a medical field paper according to the given paper title and abstract, output 1 or 0, the following is the paper title and abstract -->{text}", history=[],
    temperature=0.01)
    return response

予測、CSV エクスポート

from tqdm import tqdm #预测过程的进度条

label = [] #存储预测结果


for i in tqdm(range(len(testB_df))): # 遍历测试集中的每一条样本
    test_item = testB_df.loc[i]      # 测试集中的每一条样本
    # 构建预测函数的输入:prompt
    test_input = f"title:{test_item[1]},author:{test_item[2]},abstract:{test_item[3]}"
    label.append(int(predict(test_input)))# 预测结果存入lable列表

testB_df['label'] = label # 把label列表存入testB_df

# task1虽然只需要label,但需要有一个keywords列,用个随意的字符串代替
testB_df['Keywords'] = ['tmp' for _ in range(2000)]

# 制作submit,提交submit
submit = testB_df[['uuid', 'Keywords', 'label']]
submit.to_csv('submit.csv', index=False)

結果を送信します:

7661b0e382974b8c935fa8a6e0827141.png

 ライト

 

おすすめ

転載: blog.csdn.net/qq_51314244/article/details/132425716