Redisソースコード分析-リンクリスト

前書き

       リンクリストはRedisで広く使用されています。たとえば、リストキーの基本的な実装の1つはリンクリストです。リストキーに数量リストにさらに多くの要素が含まれている場合、またはリストに含まれている要素がすべて比較的長い文字列である場合、Redisはリンクリストをリストキーの基礎となる実装として使用します。

Redisリンクリストは必要な構造を実現します

/*
 * 双端链表节点
 */
typedef struct listNode {

    // 前置节点
    struct listNode *prev;

    // 后置节点
    struct listNode *next;

    // 节点的值
    void *value;

} listNode;

/* Directions for iterators 
 *
 * 迭代器进行迭代的方向
 */
// 从表头向表尾进行迭代
#define AL_START_HEAD 0
// 从表尾到表头进行迭代
#define AL_START_TAIL 1


/*
 * 双端链表迭代器
 */
typedef struct listIter {

    // 当前迭代到的节点
    listNode *next;

    // 迭代的方向
    int direction;

} listIter;

/*
 * 双端链表结构
 */
typedef struct list {

    // 表头节点
    listNode *head;

    // 表尾节点
    listNode *tail;

    // 节点值复制函数
    void *(*dup)(void *ptr);

    // 节点值释放函数
    void (*free)(void *ptr);

    // 节点值对比函数
    int (*match)(void *ptr, void *key);

    // 链表所包含的节点数量
    unsigned long len;

} list;

 

 

リンクリスト機能のRedis

Redisリンクリスト操作のメインAPI実装

/*
 * 创建一个新的链表
 *
 * 创建成功返回链表,失败返回 NULL 。
 *
 * T = O(1)
 */
list *listCreate(void)
{
    struct list *list;

    // 分配内存
    if ((list = zmalloc(sizeof(*list))) == NULL)
        return NULL;

    // 初始化属性
    list->head = list->tail = NULL;
    list->len = 0;
    list->dup = NULL;
    list->free = NULL;
    list->match = NULL;

    return list;
}

/*
 * 释放整个链表,以及链表中所有节点
 *
 * T = O(N)
 */
void listRelease(list *list)
{
    unsigned long len;
    listNode *current, *next;

    // 指向头指针
    current = list->head;
    // 遍历整个链表
    len = list->len;
    while(len--) {
        next = current->next;

        // 如果有设置值释放函数,那么调用它
        if (list->free) list->free(current->value);

        // 释放节点结构
        zfree(current);

        current = next;
    }

    // 释放链表结构
    zfree(list);
}

/*
 * 将一个包含有给定值指针 value 的新节点添加到链表的表头
 *
 * 如果为新节点分配内存出错,那么不执行任何动作,仅返回 NULL
 *
 * 如果执行成功,返回传入的链表指针
 *
 * T = O(1)
 */
list *listAddNodeHead(list *list, void *value)
{
    listNode *node;

    // 为节点分配内存
    if ((node = zmalloc(sizeof(*node))) == NULL)
        return NULL;

    // 保存值指针
    node->value = value;

    // 添加节点到空链表
    if (list->len == 0) {
        list->head = list->tail = node;
        node->prev = node->next = NULL;
    // 添加节点到非空链表
    } else {
        node->prev = NULL;
        node->next = list->head;
        list->head->prev = node;
        list->head = node;
    }

    // 更新链表节点数
    list->len++;

    return list;
}

/*
 * 将一个包含有给定值指针 value 的新节点添加到链表的表尾
 *
 * 如果为新节点分配内存出错,那么不执行任何动作,仅返回 NULL
 *
 * 如果执行成功,返回传入的链表指针
 *
 * T = O(1)
 */
list *listAddNodeTail(list *list, void *value)
{
    listNode *node;

    // 为新节点分配内存
    if ((node = zmalloc(sizeof(*node))) == NULL)
        return NULL;

    // 保存值指针
    node->value = value;

    // 目标链表为空
    if (list->len == 0) {
        list->head = list->tail = node;
        node->prev = node->next = NULL;
    // 目标链表非空
    } else {
        node->prev = list->tail;
        node->next = NULL;
        list->tail->next = node;
        list->tail = node;
    }

    // 更新链表节点数
    list->len++;

    return list;
}

/*
 * 创建一个包含值 value 的新节点,并将它插入到 old_node 的之前或之后
 *
 * 如果 after 为 0 ,将新节点插入到 old_node 之前。
 * 如果 after 为 1 ,将新节点插入到 old_node 之后。
 *
 * T = O(1)
 */
list *listInsertNode(list *list, listNode *old_node, void *value, int after) {
    listNode *node;

    // 创建新节点
    if ((node = zmalloc(sizeof(*node))) == NULL)
        return NULL;

    // 保存值
    node->value = value;

    // 将新节点添加到给定节点之后
    if (after) {
        node->prev = old_node;
        node->next = old_node->next;
        // 给定节点是原表尾节点
        if (list->tail == old_node) {
            list->tail = node;
        }
    // 将新节点添加到给定节点之前
    } else {
        node->next = old_node;
        node->prev = old_node->prev;
        // 给定节点是原表头节点
        if (list->head == old_node) {
            list->head = node;
        }
    }

    // 更新新节点的前置指针
    if (node->prev != NULL) {
        node->prev->next = node;
    }
    // 更新新节点的后置指针
    if (node->next != NULL) {
        node->next->prev = node;
    }

    // 更新链表节点数
    list->len++;

    return list;
}

/*
 * 从链表 list 中删除给定节点 node 
 * 
 * 对节点私有值(private value of the node)的释放工作由调用者进行。
 *
 * T = O(1)
 */
void listDelNode(list *list, listNode *node)
{
    // 调整前置节点的指针
    if (node->prev)
        node->prev->next = node->next;
    else
        list->head = node->next;

    // 调整后置节点的指针
    if (node->next)
        node->next->prev = node->prev;
    else
        list->tail = node->prev;

    // 释放值
    if (list->free) list->free(node->value);

    // 释放节点
    zfree(node);

    // 链表数减一
    list->len--;
}

/*
 * 为给定链表创建一个迭代器,
 * 之后每次对这个迭代器调用 listNext 都返回被迭代到的链表节点
 *
 * direction 参数决定了迭代器的迭代方向:
 *  AL_START_HEAD :从表头向表尾迭代
 *  AL_START_TAIL :从表尾想表头迭代
 *
 * T = O(1)
 */
listIter *listGetIterator(list *list, int direction)
{
    // 为迭代器分配内存
    listIter *iter;
    if ((iter = zmalloc(sizeof(*iter))) == NULL) return NULL;

    // 根据迭代方向,设置迭代器的起始节点
    if (direction == AL_START_HEAD)
        iter->next = list->head;
    else
        iter->next = list->tail;

    // 记录迭代方向
    iter->direction = direction;

    return iter;
}

/* Release the iterator memory */
/*
 * 释放迭代器
 *
 * T = O(1)
 */
void listReleaseIterator(listIter *iter) {
    zfree(iter);
}

/*
 * 返回迭代器当前所指向的节点。
 *
 * 删除当前节点是允许的,但不能修改链表里的其他节点。
 *
 * 函数要么返回一个节点,要么返回 NULL ,常见的用法是:
 *
 * iter = listGetIterator(list,<direction>);
 * while ((node = listNext(iter)) != NULL) {
 *     doSomethingWith(listNodeValue(node));
 * }
 *
 * T = O(1)
 */
listNode *listNext(listIter *iter)
{
    listNode *current = iter->next;

    if (current != NULL) {
        // 根据方向选择下一个节点
        if (iter->direction == AL_START_HEAD)
            // 保存下一个节点,防止当前节点被删除而造成指针丢失
            iter->next = current->next;
        else
            // 保存下一个节点,防止当前节点被删除而造成指针丢失
            iter->next = current->prev;
    }

    return current;
}

/* 
 * 查找链表 list 中值和 key 匹配的节点。
 * 
 * 对比操作由链表的 match 函数负责进行,
 * 如果没有设置 match 函数,
 * 那么直接通过对比值的指针来决定是否匹配。
 *
 * 如果匹配成功,那么第一个匹配的节点会被返回。
 * 如果没有匹配任何节点,那么返回 NULL 。
 *
 * T = O(N)
 */
listNode *listSearchKey(list *list, void *key)
{
    listIter *iter;
    listNode *node;

    // 迭代整个链表
    iter = listGetIterator(list, AL_START_HEAD);
    while((node = listNext(iter)) != NULL) {
        
        // 对比
        if (list->match) {
            if (list->match(node->value, key)) {
                listReleaseIterator(iter);
                // 找到
                return node;
            }
        } else {
            if (key == node->value) {
                listReleaseIterator(iter);
                // 找到
                return node;
            }
        }
    }
    
    listReleaseIterator(iter);

    // 未找到
    return NULL;
}

/*
 * 返回链表在给定索引上的值。
 *
 * 索引以 0 为起始,也可以是负数, -1 表示链表最后一个节点,诸如此类。
 *
 * 如果索引超出范围(out of range),返回 NULL 。
 *
 * T = O(N)
 */
listNode *listIndex(list *list, long index) {
    listNode *n;

    // 如果索引为负数,从表尾开始查找
    if (index < 0) {
        index = (-index)-1;
        n = list->tail;
        while(index-- && n) n = n->prev;
    // 如果索引为正数,从表头开始查找
    } else {
        n = list->head;
        while(index-- && n) n = n->next;
    }

    return n;
}

いくつかのマクロ定義もあります

// 返回给定链表所包含的节点数量
// T = O(1)
#define listLength(l) ((l)->len)
// 返回给定链表的表头节点
// T = O(1)
#define listFirst(l) ((l)->head)
// 返回给定链表的表尾节点
// T = O(1)
#define listLast(l) ((l)->tail)
// 返回给定节点的前置节点
// T = O(1)
#define listPrevNode(n) ((n)->prev)
// 返回给定节点的后置节点
// T = O(1)
#define listNextNode(n) ((n)->next)
// 返回给定节点的值
// T = O(1)
#define listNodeValue(n) ((n)->value)

// 将链表 l 的值复制函数设置为 m
// T = O(1)
#define listSetDupMethod(l,m) ((l)->dup = (m))
// 将链表 l 的值释放函数设置为 m
// T = O(1)
#define listSetFreeMethod(l,m) ((l)->free = (m))
// 将链表的对比函数设置为 m
// T = O(1)
#define listSetMatchMethod(l,m) ((l)->match = (m))

// 返回给定链表的值复制函数
// T = O(1)
#define listGetDupMethod(l) ((l)->dup)
// 返回给定链表的值释放函数
// T = O(1)
#define listGetFree(l) ((l)->free)
// 返回给定链表的值对比函数
// T = O(1)
#define listGetMatchMethod(l) ((l)->match)

 

おすすめ

転載: blog.csdn.net/u014608280/article/details/105028203