Diagrama de estructura del modelo
Usar secuencial
import torch
from torch import nn
from torch.utils.tensorboard import SummaryWriter
class Model(nn.Module):
def __init__(self):
super(Model, self).__init__()
self.sequential = nn.Sequential(
nn.Conv2d(in_channels=3, out_channels=32,
kernel_size=5, padding=2),
nn.MaxPool2d(kernel_size=2),
nn.Conv2d(in_channels=32, out_channels=32,
kernel_size=5, padding=2),
nn.MaxPool2d(kernel_size=2),
nn.Conv2d(in_channels=32, out_channels=64,
kernel_size=5, padding=2),
nn.MaxPool2d(kernel_size=2),
nn.Flatten(),
nn.Linear(in_features=1024, out_features=64),
nn.Linear(in_features=64, out_features=10)
)
def forward(self, input):
output = self.sequential(input)
return output
writer = SummaryWriter('./nn_sq/')
model = Model()
print(model)
input = torch.ones(size=(64, 3, 32, 32))
output = model(input)
writer.add_graph(model=model, input_to_model=input, verbose=True)
print(output.shape)
writer.close()
No utilizar secuencial
import torch
from torch import nn
class Model(nn.Module):
def __init__(self):
super(Model, self).__init__()
self.conv1 = nn.Conv2d(in_channels=3, out_channels=32,
kernel_size=5, padding=2)
self.pool1 = nn.MaxPool2d(kernel_size=2)
self.conv2 = nn.Conv2d(in_channels=32, out_channels=32,
kernel_size=5, padding=2)
self.pool2 = nn.MaxPool2d(kernel_size=2)
self.conv3 = nn.Conv2d(in_channels=32, out_channels=64,
kernel_size=5, padding=2)
self.pool3 = nn.MaxPool2d(kernel_size=2)
self.flatten = nn.Flatten()
self.liner1 = nn.Linear(in_features=1024, out_features=64)
self.liner2 = nn.Linear(in_features=64, out_features=10)
def forward(self, input):
x = self.conv1(input)
x = self.pool1(x)
x = self.conv2(x)
x = self.pool2(x)
x = self.conv3(x)
x = self.pool3(x)
x = self.flatten(x)
x = self.liner1(x)
output = self.liner2(x)
return output
model = Model()
input = torch.ones(size=(64, 3, 32, 32))
output = model(input)
print(output.shape)