Ajuste del modo de encapsulación de claves

Modo de encapsulación de clave: confidencialidad y a prueba de manipulaciones, adecuado para cifrar una pequeña cantidad de datos, como claves; dividido en modo de llenado y modo de no llenado;

RFC 3394 

Estándares relacionados con RFC
RFC 3217 Envoltura de teclas Triple-DES y RC2
RFC 3394 Algoritmo de ajuste de clave del estándar de cifrado avanzado (AES)
RFC 5649 Ajuste de clave de estándar de cifrado avanzado (AES) con algoritmo de relleno

implementación de referencia de openssl

warp128.c:

size_t CRYPTO_128_wrap(void *key, const unsigned char *iv,
                       unsigned char *out,
                       const unsigned char *in, size_t inlen,
                       block128_f block)
{
    unsigned char *A, B[16], *R;
    size_t i, j, t;
    if ((inlen & 0x7) || (inlen < 16) || (inlen > CRYPTO128_WRAP_MAX))
        return 0;
    A = B;
    t = 1;
    memmove(out + 8, in, inlen);
    if (!iv)
        iv = default_iv;

    memcpy(A, iv, 8);

    for (j = 0; j < 6; j++) {
        R = out + 8;
        for (i = 0; i < inlen; i += 8, t++, R += 8) {
            memcpy(B + 8, R, 8);
            block(B, B, key);
            A[7] ^= (unsigned char)(t & 0xff);
            if (t > 0xff) {
                A[6] ^= (unsigned char)((t >> 8) & 0xff);
                A[5] ^= (unsigned char)((t >> 16) & 0xff);
                A[4] ^= (unsigned char)((t >> 24) & 0xff);
            }
            memcpy(R, B + 8, 8);
        }
    }
    memcpy(out, A, 8);
    return inlen + 8;
}


static size_t crypto_128_unwrap_raw(void *key, unsigned char *iv,
                                    unsigned char *out,
                                    const unsigned char *in, size_t inlen,
                                    block128_f block)
{
    unsigned char *A, B[16], *R;
    size_t i, j, t;
    inlen -= 8;
    if ((inlen & 0x7) || (inlen < 16) || (inlen > CRYPTO128_WRAP_MAX))
        return 0;
    A = B;
    t = 6 * (inlen >> 3);
    memcpy(A, in, 8);
    memmove(out, in + 8, inlen);
    for (j = 0; j < 6; j++) {
        R = out + inlen - 8;
        for (i = 0; i < inlen; i += 8, t--, R -= 8) {
            A[7] ^= (unsigned char)(t & 0xff);
            if (t > 0xff) {
                A[6] ^= (unsigned char)((t >> 8) & 0xff);
                A[5] ^= (unsigned char)((t >> 16) & 0xff);
                A[4] ^= (unsigned char)((t >> 24) & 0xff);
            }
            memcpy(B + 8, R, 8);
            block(B, B, key);
            memcpy(R, B + 8, 8);
        }
    }
    memcpy(iv, A, 8);
    return inlen;
}



size_t CRYPTO_128_unwrap(void *key, const unsigned char *iv,
                         unsigned char *out, const unsigned char *in,
                         size_t inlen, block128_f block)
{
    size_t ret;
    unsigned char got_iv[8];

    ret = crypto_128_unwrap_raw(key, got_iv, out, in, inlen, block);
    if (ret == 0)
        return 0;

    if (!iv)
        iv = default_iv;
    if (CRYPTO_memcmp(got_iv, iv, 8)) {
        OPENSSL_cleanse(out, ret);
        return 0;
    }
    return ret;
}
size_t CRYPTO_128_wrap_pad(void *key, const unsigned char *icv,
                           unsigned char *out,
                           const unsigned char *in, size_t inlen,
                           block128_f block)
{
    /* n: number of 64-bit blocks in the padded key data
     *
     * If length of plain text is not a multiple of 8, pad the plain text octet
     * string on the right with octets of zeros, where final length is the
     * smallest multiple of 8 that is greater than length of plain text.
     * If length of plain text is a multiple of 8, then there is no padding. */
    const size_t blocks_padded = (inlen + 7) / 8; /* CEILING(m/8) */
    const size_t padded_len = blocks_padded * 8;
    const size_t padding_len = padded_len - inlen;
    /* RFC 5649 section 3: Alternative Initial Value */
    unsigned char aiv[8];
    int ret;

    /* Section 1: use 32-bit fixed field for plaintext octet length */
    if (inlen == 0 || inlen >= CRYPTO128_WRAP_MAX)
        return 0;

    /* Section 3: Alternative Initial Value */
    if (!icv)
        memcpy(aiv, default_aiv, 4);
    else
        memcpy(aiv, icv, 4);    /* Standard doesn't mention this. */

    aiv[4] = (inlen >> 24) & 0xFF;
    aiv[5] = (inlen >> 16) & 0xFF;
    aiv[6] = (inlen >> 8) & 0xFF;
    aiv[7] = inlen & 0xFF;

    if (padded_len == 8) {
        /*
         * Section 4.1 - special case in step 2: If the padded plaintext
         * contains exactly eight octets, then prepend the AIV and encrypt
         * the resulting 128-bit block using AES in ECB mode.
         */
        memmove(out + 8, in, inlen);
        memcpy(out, aiv, 8);
        memset(out + 8 + inlen, 0, padding_len);
        block(out, out, key);
        ret = 16;               /* AIV + padded input */
    } else {
        memmove(out, in, inlen);
        memset(out + inlen, 0, padding_len); /* Section 4.1 step 1 */
        ret = CRYPTO_128_wrap(key, aiv, out, out, padded_len, block);
    }

    return ret;
}



size_t CRYPTO_128_unwrap_pad(void *key, const unsigned char *icv,
                             unsigned char *out,
                             const unsigned char *in, size_t inlen,
                             block128_f block)
{
    /* n: number of 64-bit blocks in the padded key data */
    size_t n = inlen / 8 - 1;
    size_t padded_len;
    size_t padding_len;
    size_t ptext_len;
    /* RFC 5649 section 3: Alternative Initial Value */
    unsigned char aiv[8];
    static unsigned char zeros[8] = { 0x0 };
    size_t ret;

    /* Section 4.2: Ciphertext length has to be (n+1) 64-bit blocks. */
    if ((inlen & 0x7) != 0 || inlen < 16 || inlen >= CRYPTO128_WRAP_MAX)
        return 0;

    if (inlen == 16) {
        /*
         * Section 4.2 - special case in step 1: When n=1, the ciphertext
         * contains exactly two 64-bit blocks and they are decrypted as a
         * single AES block using AES in ECB mode: AIV | P[1] = DEC(K, C[0] |
         * C[1])
         */
        unsigned char buff[16];

        block(in, buff, key);
        memcpy(aiv, buff, 8);
        /* Remove AIV */
        memcpy(out, buff + 8, 8);
        padded_len = 8;
        OPENSSL_cleanse(buff, inlen);
    } else {
        padded_len = inlen - 8;
        ret = crypto_128_unwrap_raw(key, aiv, out, in, inlen, block);
        if (padded_len != ret) {
            OPENSSL_cleanse(out, inlen);
            return 0;
        }
    }

    /*
     * Section 3: AIV checks: Check that MSB(32,A) = A65959A6. Optionally a
     * user-supplied value can be used (even if standard doesn't mention
     * this).
     */
    if ((!icv && CRYPTO_memcmp(aiv, default_aiv, 4))
        || (icv && CRYPTO_memcmp(aiv, icv, 4))) {
        OPENSSL_cleanse(out, inlen);
        return 0;
    }

    /*
     * Check that 8*(n-1) < LSB(32,AIV) <= 8*n. If so, let ptext_len =
     * LSB(32,AIV).
     */

    ptext_len =   ((unsigned int)aiv[4] << 24)
                | ((unsigned int)aiv[5] << 16)
                | ((unsigned int)aiv[6] <<  8)
                |  (unsigned int)aiv[7];
    if (8 * (n - 1) >= ptext_len || ptext_len > 8 * n) {
        OPENSSL_cleanse(out, inlen);
        return 0;
    }

    /*
     * Check that the rightmost padding_len octets of the output data are
     * zero.
     */
    padding_len = padded_len - ptext_len;
    if (CRYPTO_memcmp(out + ptext_len, zeros, padding_len) != 0) {
        OPENSSL_cleanse(out, inlen);
        return 0;
    }

    /* Section 4.2 step 3: Remove padding */
    return ptext_len;
}

Supongo que te gusta

Origin blog.csdn.net/beebeeyoung/article/details/114454037
Recomendado
Clasificación