Análisis de inicio de Linux-4.1.15

1: Entrada de inicio del análisis del script de enlace

arch / arm / kernel / vmlinux.lds

 *  arch/arm/include/asm/page.h
 *
 *  Copyright (C) 1995-2003 Russell King
 *
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License version 2 as
 * published by the Free Software Foundation.
 */
OUTPUT_ARCH(arm)
ENTRY(stext)
jiffies = jiffies_64;
SECTIONS
{

... ...

Se puede ver en el script de enlace que la entrada de inicio es "ENTRY (stext)", ubicada en arch / arm / kernel / head. S

Dos: análisis del proceso de inicio de Linux

1 、 arco / brazo / núcleo / cabeza. S

La nota indica que antes de que se inicie el kernel de Linux, es necesario cerrar la MMU y cerrar el D-cache, no importa el I-cache, r0 = 0 .....

/*
 * Kernel startup entry point.
 * ---------------------------
 *
 * This is normally called from the decompressor code.  The requirements
 * are: MMU = off, D-cache = off, I-cache = dont care, r0 = 0,
 * r1 = machine nr, r2 = atags or dtb pointer.
 */

ENTRY(stext)
... ...
	safe_svcmode_maskall r9    @ 确保CPU处于SVC模式,并且关闭了所有中断

	mrc	p15, 0, r9, c0, c0		@ get processor id  
(1)	bl	__lookup_processor_type		@ r5=procinfo r9=cpuid
	movs	r10, r5				@ invalid processor (r5=0)?
        THUMB( it	eq )		@ force fixup-able long branch encoding
	beq	__error_p			@ yes, error 'p'

... ...

	/*
	 * r1 = machine no, r2 = atags or dtb,
	 * r8 = phys_offset, r9 = cpuid, r10 = procinfo
	 */
(2)	bl	__vet_atags
... ...
	bl	__create_page_tables  @ 创建页表

	/*
	 * The following calls CPU specific code in a position independent
	 * manner.  See arch/arm/mm/proc-*.S for details.  r10 = base of
	 * xxx_proc_info structure selected by __lookup_processor_type
	 * above.  On return, the CPU will be ready for the MMU to be
	 * turned on, and r0 will hold the CPU control register value.
	 */
(3)	ldr	r13, =__mmap_switched		@ address to jump to after
						@ mmu has been enabled
	adr	lr, BSYM(1f)			@ return (PIC) address
	mov	r8, r4				@ set TTBR1 to swapper_pg_dir
	ldr	r12, [r10, #PROCINFO_INITFUNC]
	add	r12, r12, r10
	ret	r12
(4)	b	__enable_mmu

(1) bl __lookup_processor_type Verifique si el sistema actual es compatible con esta CPU y, si lo hace, obtenga la información procinfo y guárdela en la estructura proc_info_list.

__lookup_processor_type:
	adr	r3, __lookup_processor_type_data
	ldmia	r3, {r4 - r6}
	sub	r3, r3, r4			@ get offset between virt&phys
	add	r5, r5, r3			@ convert virt addresses to
	add	r6, r6, r3			@ physical address space
1:	ldmia	r5, {r3, r4}			@ value, mask
	and	r4, r4, r9			@ mask wanted bits
	teq	r3, r4
	beq	2f
	add	r5, r5, #PROC_INFO_SZ		@ sizeof(proc_info_list)
	cmp	r5, r6
	blo	1b
	mov	r5, #0				@ unknown processor
2:	ret	lr
ENDPROC(__lookup_processor_type)

struct proc_info_list {
	unsigned int		cpu_val;
	unsigned int		cpu_mask;
	unsigned long		__cpu_mm_mmu_flags;	/* used by head.S */
	unsigned long		__cpu_io_mmu_flags;	/* used by head.S */
	unsigned long		__cpu_flush;		/* used by head.S */
	const char		*arch_name;
	const char		*elf_name;
	unsigned int		elf_hwcap;
	const char		*cpu_name;
	struct processor	*proc;
	struct cpu_tlb_fns	*tlb;
	struct cpu_user_fns	*user;
	struct cpu_cache_fns	*cache;
};

(2) bl __vet_atags verifica la legalidad de atags o árbol de dispositivos (dtb)

__vet_atags:
	tst	r2, #0x3			@ aligned?
	bne	1f

	ldr	r5, [r2, #0]
#ifdef CONFIG_OF_FLATTREE
	ldr	r6, =OF_DT_MAGIC		@ is it a DTB?
	cmp	r5, r6
	beq	2f
#endif
	cmp	r5, #ATAG_CORE_SIZE		@ is first tag ATAG_CORE?
	cmpne	r5, #ATAG_CORE_SIZE_EMPTY
	bne	1f
	ldr	r5, [r2, #4]
	ldr	r6, =ATAG_CORE
	cmp	r5, r6
	bne	1f

2:	ret	lr				@ atag/dtb pointer is ok

1:	mov	r2, #0
	ret	lr
ENDPROC(__vet_atags)

(3) ldr r13, = __ mmap_switched guarda la dirección de la función en el registro r13 y finalmente llama a la función start_kernel

__mmap_switched:
	adr	r3, __mmap_switched_data

	ldmia	r3!, {r4, r5, r6, r7}
	cmp	r4, r5				@ Copy data segment if needed
1:	cmpne	r5, r6
	ldrne	fp, [r4], #4
	strne	fp, [r5], #4
	bne	1b

	mov	fp, #0				@ Clear BSS (and zero fp)
1:	cmp	r6, r7
	strcc	fp, [r6],#4
	bcc	1b

 ARM(	ldmia	r3, {r4, r5, r6, r7, sp})
 THUMB(	ldmia	r3, {r4, r5, r6, r7}	)
 THUMB(	ldr	sp, [r3, #16]		)
	str	r9, [r4]			@ Save processor ID
	str	r1, [r5]			@ Save machine type
	str	r2, [r6]			@ Save atags pointer
	cmp	r7, #0
	strne	r0, [r7]			@ Save control register values
	b	start_kernel
ENDPROC(__mmap_switched)

(4) b __enable_mmu llama a la función __turn_mmu_on para encender la MMU, y finalmente ejecuta la función guardada en el registro r13, que es la función start_kernel mencionada en (3)

__enable_mmu:

... ...
	b	__turn_mmu_on
ENDPROC(__enable_mmu)
ENTRY(__turn_mmu_on)
	mov	r0, r0
	instr_sync
	mcr	p15, 0, r0, c1, c0, 0		@ write control reg
	mrc	p15, 0, r3, c0, c0, 0		@ read id reg
	instr_sync
	mov	r3, r3
	mov	r3, r13
	ret	r3
__turn_mmu_on_end:
ENDPROC(__turn_mmu_on)

2. \ init \ Main.c función start_kernel (): inicialización de varios módulos funcionales

asmlinkage __visible void __init start_kernel(void)
{
	char *command_line;
	char *after_dashes;

	/*
	 * Need to run as early as possible, to initialize the
	 * lockdep hash:
	 */
	lockdep_init();                            @ 死锁检测模块,此函数会初始化两个hash表,需优先执行
	set_task_stack_end_magic(&init_task);      @ 设置任务栈结束魔术数,用于栈溢出检测
	smp_setup_processor_id();                  @ 多核处理器,设置处理器ID
	debug_objects_early_init();                @ debug相关初始化

	/*
	 * Set up the the initial canary ASAP:
	 */
	boot_init_stack_canary();                  @ 栈溢出检测初始化

	cgroup_init_early();                       @ cgroup控制linux系统资源初始化

	local_irq_disable();                       @ 关闭当前CPU中断
	early_boot_irqs_disabled = true;

/*
 * Interrupts are still disabled. Do necessary setups, then
 * enable them
 */
	boot_cpu_init();                           @ CPU初始化
	page_address_init();                       @ 页地址初始化
	pr_notice("%s", linux_banner);             @ 打印linux版本号,编译时间等信息
	setup_arch(&command_line);                 @ 架构初始化,会解析传递进来的atags或者设备树文件。
	mm_init_cpumask(&init_mm);                 @ 内存初始化
	setup_command_line(command_line);          @ 存储命令行参数
	setup_nr_cpu_ids();                        @ 获取CPU核心数
	setup_per_cpu_areas();                     @ 设置每个CPU数据
	smp_prepare_boot_cpu();	/* arch-specific boot-cpu hooks */

	build_all_zonelists(NULL, NULL);           @ 建立系统内存页区(zone)链表
	page_alloc_init();                         @ 处理用于热插拔CPU的页

	pr_notice("Kernel command line: %s\n", boot_command_line);
	parse_early_param();                       @ 解析命令行中的console参数
	after_dashes = parse_args("Booting kernel",
				  static_command_line, __start___param,
				  __stop___param - __start___param,
				  -1, -1, &unknown_bootoption);
	if (!IS_ERR_OR_NULL(after_dashes))
		parse_args("Setting init args", after_dashes, NULL, 0, -1, -1,
			   set_init_arg);

	jump_label_init();

	/*
	 * These use large bootmem allocations and must precede
	 * kmem_cache_init()
	 */
	setup_log_buf(0);                           @ 设置log使用的缓冲区
	pidhash_init();                             @ 构建PID哈希表
	vfs_caches_init_early();                    @ 预先初始化vfs的目录项和索引节点缓存
	sort_main_extable();                        @ 定义内核异常列表
	trap_init();                                @ 完成对系统保留中断向量的初始化
	mm_init();                                  @ 内存管理初始化

	/*
	 * Set up the scheduler prior starting any interrupts (such as the
	 * timer interrupt). Full topology setup happens at smp_init()
	 * time - but meanwhile we still have a functioning scheduler.
	 */
	sched_init();                               @ 初始化调度器
	/*
	 * Disable preemption - early bootup scheduling is extremely
	 * fragile until we cpu_idle() for the first time.
	 */
	preempt_disable();                          @ 关闭优先级抢占  
	if (WARN(!irqs_disabled(),
		 "Interrupts were enabled *very* early, fixing it\n"))
		local_irq_disable();
	idr_init_cache();                           @ IDR初始化
	rcu_init();                                 @ 初始化RCU

	/* trace_printk() and trace points may be used after this */
	trace_init();                               @ 跟踪调试相关初始化

	context_tracking_init();    
	radix_tree_init();                          @ 基数树相关数据结构初始化
	/* init some links before init_ISA_irqs() */
	early_irq_init();                           @ 中断初始化
	init_IRQ();
	tick_init();                                @ tick初始化
	rcu_init_nohz();    
	init_timers();                              @ 初始化定时器
	hrtimers_init();                            @ 初始化高精度定时器
	softirq_init();                             @ 软中断初始化
	timekeeping_init();
	time_init();                                @ 初始化系统时间
	sched_clock_postinit();
	perf_event_init();
	profile_init();
	call_function_init();
	WARN(!irqs_disabled(), "Interrupts were enabled early\n");
	early_boot_irqs_disabled = false;
	local_irq_enable();                         @ 使能中断

	kmem_cache_init_late();                     @ linux内存分配器slab初始化

	/*
	 * HACK ALERT! This is early. We're enabling the console before
	 * we've done PCI setups etc, and console_init() must be aware of
	 * this. But we do want output early, in case something goes wrong.
	 */
	console_init();                             @ 控制台初始化
	if (panic_later)
		panic("Too many boot %s vars at `%s'", panic_later,
		      panic_param);

	lockdep_info();

	/*
	 * Need to run this when irqs are enabled, because it wants
	 * to self-test [hard/soft]-irqs on/off lock inversion bugs
	 * too:
	 */
	locking_selftest();                         @ 锁自测

#ifdef CONFIG_BLK_DEV_INITRD
	if (initrd_start && !initrd_below_start_ok &&
	    page_to_pfn(virt_to_page((void *)initrd_start)) < min_low_pfn) {
		pr_crit("initrd overwritten (0x%08lx < 0x%08lx) - disabling it.\n",
		    page_to_pfn(virt_to_page((void *)initrd_start)),
		    min_low_pfn);
		initrd_start = 0;
	}
#endif
	page_ext_init();
	debug_objects_mem_init();
	kmemleak_init();                             @ 检测内存泄漏初始化
	setup_per_cpu_pageset();
	numa_policy_init();
	if (late_time_init)
		late_time_init();
	sched_clock_init();
	calibrate_delay();
	pidmap_init();                               @ PID位图初始化
	anon_vma_init();                             @ 生成anon_vma slab缓存
	acpi_early_init();
#ifdef CONFIG_X86
	if (efi_enabled(EFI_RUNTIME_SERVICES))
		efi_enter_virtual_mode();
#endif
#ifdef CONFIG_X86_ESPFIX64
	/* Should be run before the first non-init thread is created */
	init_espfix_bsp();
#endif
	thread_info_cache_init();
	cred_init();    
	fork_init();                                 @ 初始化一些结构体以使用fork函数
	proc_caches_init();                          @ 给各种资源管理结构分配缓存
	buffer_init();                               @ 初始化缓冲缓存
	key_init();                                  @ 初始化密匙
	security_init();
	dbg_late_init();
	vfs_caches_init(totalram_pages);             @ 为VFS创建缓存
	signals_init();                              @ 初始化信号
	/* rootfs populating might need page-writeback */
	page_writeback_init();                       @ 页回写初始化
	proc_root_init();                            @ 注册并挂载proc文件系统
	nsfs_init();
	cpuset_init();                               @ 初始化cpuset
	cgroup_init();                               @ 初始化cgroup
	taskstats_init_early();                      @ 进程状态初始化
	delayacct_init();

	check_bugs();                                @ 检查写缓存一致性

	acpi_subsystem_init();
	sfi_init_late();

	if (efi_enabled(EFI_RUNTIME_SERVICES)) {
		efi_late_init();
		efi_free_boot_services();
	}

	ftrace_init();

	/* Do the rest non-__init'ed, we're now alive */
	rest_init();                                  @调用rest_init函数
}

Introducción a la función rest_init (): proceso de creación, hilo

static noinline void __init_refok rest_init(void)
{
	int pid;

	rcu_scheduler_starting();                                     @ 启动RCU锁调度器
	smpboot_thread_init();                                       
	/*
	 * We need to spawn init first so that it obtains pid 1, however
	 * the init task will end up wanting to create kthreads, which, if
	 * we schedule it before we create kthreadd, will OOPS.
	 */
	kernel_thread(kernel_init, NULL, CLONE_FS);                   @ 创建kernel_init线程,也就是init内核进程,进程PID为1.
	numa_default_policy();
	pid = kernel_thread(kthreadd, NULL, CLONE_FS | CLONE_FILES);  @ 创建kthreadd内核进程,PID为2,负责所有内核进程的调度和管理
	rcu_read_lock();
	kthreadd_task = find_task_by_pid_ns(pid, &init_pid_ns);
	rcu_read_unlock();
	complete(&kthreadd_done);

	/*
	 * The boot idle thread must execute schedule()
	 * at least once to get things moving:
	 */
	init_idle_bootup_task(current);
	schedule_preempt_disabled();
	/* Call into cpu_idle with preempt disabled */
	cpu_startup_entry(CPUHP_ONLINE);                               @ 进入idle空闲进程,PID为0,其他进程要工作需抢占idle进程
}

Introducción a la función kernel_init (): busque el proceso de inicio, inicie el kernel de Linux

static int __ref kernel_init(void *unused)
{
	int ret;

	kernel_init_freeable();                                         @ 初始化init进程
	/* need to finish all async __init code before freeing the memory */
	async_synchronize_full();
	free_initmem();
	mark_rodata_ro();
	system_state = SYSTEM_RUNNING;
	numa_default_policy();

	flush_delayed_fput();

	if (ramdisk_execute_command) {                                  @ 其值为“/init”,也就是根目录下的init程序。              
		ret = run_init_process(ramdisk_execute_command);            @ 如果存在“/init”程序就执行run_init_process函数来运行
		if (!ret)
			return 0;
		pr_err("Failed to execute %s (error %d)\n",
		       ramdisk_execute_command, ret);
	}

	/*
	 * We try each of these until one succeeds.
	 *
	 * The Bourne shell can be used instead of init if we are
	 * trying to recover a really broken machine.
	 */
	if (execute_command) {                                           @ 同上,寻找一个一个可以运行的init程序
		ret = run_init_process(execute_command);
		if (!ret)
			return 0;
		panic("Requested init %s failed (error %d).",
		      execute_command, ret);
	}
	if (!try_to_run_init_process("/sbin/init") ||                    @ 如果上面两个变量都为空,则尝试下面几个。
	    !try_to_run_init_process("/etc/init") ||
	    !try_to_run_init_process("/bin/init") ||
	    !try_to_run_init_process("/bin/sh"))
		return 0;
                                                                     @ 都为空,linux启动失败!
	panic("No working init found.  Try passing init= option to kernel. "
	      "See Linux Documentation/init.txt for guidance.");
}

    kernel_init_freeable (): inicializa el proceso de inicio

static noinline void __init kernel_init_freeable(void)
{
	/*
	 * Wait until kthreadd is all set-up.
	 */
	wait_for_completion(&kthreadd_done);        @ 等待kthreadd进程准备就绪

... ...

	smp_init();                                 @ SMP初始化
	sched_init_smp();                           @ 多核(SMP)调度初始化

	do_basic_setup();                           @ linux设备驱动初始化,会调用driver_init完成linux下驱动模型子系统的初始化
                                                @ 以标准输入(0)的方式打开设备“/dev/console”文件描述符
	/* Open the /dev/console on the rootfs, this should never fail */
	if (sys_open((const char __user *) "/dev/console", O_RDWR, 0) < 0)
		pr_err("Warning: unable to open an initial console.\n");

	(void) sys_dup(0);                          @ 标准输出(1),标准错误(2)
	(void) sys_dup(0);
	/*
	 * check if there is an early userspace init.  If yes, let it do all
	 * the work
	 */

	if (!ramdisk_execute_command)
		ramdisk_execute_command = "/init";

	if (sys_access((const char __user *) ramdisk_execute_command, 0) != 0) {
		ramdisk_execute_command = NULL;
		prepare_namespace();                    @ 挂载根文件系统
	}

	/*
	 * Ok, we have completed the initial bootup, and
	 * we're essentially up and running. Get rid of the
	 * initmem segments and start the user-mode stuff..
	 *
	 * rootfs is available now, try loading the public keys
	 * and default modules
	 */

	integrity_load_keys();
	load_default_modules();
}

 

Supongo que te gusta

Origin blog.csdn.net/qq_34968572/article/details/103048305
Recomendado
Clasificación