Another way to demonstrate binomial inversion

A clever method to collect evidence
there f ( i ) = j = i n ( j i ) g ( j ) f(i)=\sum_{j=i}^n\binom{j}{i}g(j)
Certificate g ( i ) = j = i n ( 1 ) j i ( j i ) f ( i ) g(i)=\sum_{j=i}^n(-1)^{j-i}\binom{j}{i}f(i)
Consider f , g f,g generation function
G ( x ) = i = 0 n g ( i ) x i G (x) = \ sum_ {i = 0} ^ (i) x ^ i
then G ( x + 1 ) = i = 0 n g ( i ) j = 0 i x j ( i j ) = j = 0 n x j i = j n ( i j ) g ( i ) = F ( x ) G(x+1)=\sum_{i=0}^ng(i)\sum_{j=0}^ix^j\binom{i}{j}=\sum_{j=0}^nx^j\sum_{i=j}^n\binom{i}{j}g(i)=F(x)
so G ( x ) = F ( x 1 ) = i = 0 n f ( i ) j = 0 i ( 1 ) j i ( i j ) x j = i = 0 n x i j = i n ( j i ) ( 1 ) j i f ( j ) G(x)=F(x-1)=\sum_{i=0}^nf(i)\sum_{j=0}^i(-1)^{j-i}\binom{i}{j}x^j=\sum_{i=0}^nx^i\sum_{j=i}^n\binom{j}{i}(-1)^{j-i}f(j)

Published 610 original articles · won praise 94 · views 50000 +

Guess you like

Origin blog.csdn.net/sslz_fsy/article/details/103252030