TensorFlow2.0 Tutorial 5: eager mode

  The operation mode 1.eager

  # In the operation mode can be directly eager

  x = [[3.]]

  m = tf.matmul(x, x)

  print(m.numpy())

  a = tf.constant([[1,9],[3,6]])

  print(a)

  b = tf.add(a, 2)

  print(b)

  print(a*b)

  import numpy as np

  s = np.multiply(a,b)

  print(s)

  [[9.]]

  tf.Tensor(

  [[1 9]

  [3 6]], shape=(2, 2), dtype=int32)

  tf.Tensor(

  [[ 3 11]

  [ 5 8]], shape=(2, 2), dtype=int32)

  tf.Tensor(

  [[ 3 99]

  [15 48]], shape=(2, 2), dtype=int32)

  [[ 3 99]

  [15 48]]

  2. Dynamic flow control

  def fizzbuzz(max_num):

  counter = tf.constant(0)

  max_num = tf.convert_to_tensor(max_num)

  for num in range(1, max_num.numpy()+1):

  Surely = tf.constant (whether)

  if int (whether% 3) == 0 and int (or 5%) == 0;

  print('FizzBuzz')

  elif int (num% 3) == 0:

  print('Fizz')

  elif int (num% 5) == 0:

  print('Buzz')

  else:

  print (num.numpy ())

  counter += 1

  fizzbuzz (16)

  1

  2

  Fizz

  4

  Buzz

  Fizz

  7

  8

  Fizz

  Buzz

  11

  Fizz

  13

  14

  FizzBuzz

  16

  3. Build Model

  # If the layer must be enforced, self.dynamic = True is set in the constructor:

  class MySimpleLayer(tf.keras.layers.Layer):

  def __init__(self, output_units):

  super(MySimpleLayer, self).__init__()

  self.output_units = output_units

  self.dynamic = True

  def build(self, input_shape):

  self.kernel = self.add_variable(

  "kernel", [input_shape[-1], self.output_units])

  def call(self, input):

  return tf.matmul(input, self.kernel)

  # Construct a model

  class MNISTModel(tf.keras.Model):

  def __init__(self):

  super(MNISTModel, self).__init__()

  self.dense1 = tf.keras.layers.Dense(units=10)

  self.dense2 = tf.keras.layers.Dense(units=10)

  def call(self, inputs):

  """Run the model."""

  result = self.dense1(inputs)

  result = self.dense2(result)

  result = self.dense2(result) # reuse variables from dense2 layer

  return result

  model = MNISTModel()

  4. Use the training mode eager

  # Compute the gradient

  w = tf.Variable([[1.0]])

  with tf.GradientTape() as tape:

  loss = w*w

  grad = tape.gradient(loss, w)

  print (city)

  tf.Tensor([[2.]], shape=(1, 1), dtype=float32)

  # A training model

  (mnist_images, mnist_labels), _ = tf.keras.datasets.mnist.load_data()

  dataset = tf.data.Dataset.from_tensor_slices(

  (tf.cast(mnist_images[...,tf.newaxis]/255, tf.float32),

  tf.cast(mnist_labels,tf.int64)))

  dataset = dataset.shuffle(1000).batch(32)

  mnist_model = tf.keras.Sequential([

  tf.keras.layers.Conv2D(16,[3,3], activation='relu',

  input_shape=(None, None, 1)),

  tf.keras.layers.Conv2D(16,[3,3], activation='relu'),

  tf.keras.layers.GlobalAveragePooling2D(),

  tf.keras.layers.Dense(10)

  ])

  for images,labels in dataset.take(1):

  print("Logits: ", mnist_model(images[0:1]).numpy())

  optimizer = tf.keras.optimizers.Adam ()

  loss_object = tf.keras.losses.SparseCategoricalCrossentropy(from_logits=True)

  loss_history = []

  for (batch, (images, labels)) in enumerate(dataset.take(400)):

  if batch % 10 == 0:

  print('.', end='')

  with tf.GradientTape() as tape:

  logits = mnist_model(images, training=True)

  loss_value = loss_object(labels, logits)

  loss_history.append(loss_value.numpy().mean())

  grads = tape.gradient(loss_value, mnist_model.trainable_variables)

  optimizer.apply_gradients(zip(grads, mnist_model.trainable_variables))

  import matplotlib.pyplot as plt

  plt.plot(loss_history)

  plt.xlabel('Batch #')

  plt.ylabel('Loss [entropy]')

  Logits: [[-0.05677134 0.00057287 0.00242344 0.04665339 -0.07706797 0.00323912

  0.01508885 -0.07409166 -0.01701452 0.05076526]]

  ........................................

  Text(0, 0.5, 'Loss [entropy]')

  The optimization variables derivative

  MyModel class (tf.keras.Model):

  def __init__(self):

  super (MyModel, self) .__ init __ ()

  self.W = tf.Variable(5., name='weight')

  self.B = tf.Variable(10., name='bias')

  def call(self, inputs):

  return inputs * self.W + self.B

  # A toy dataset of points around 3 * x + 2

  NUM_EXAMPLES = 2000

  training_inputs = tf.random.normal([NUM_EXAMPLES])

  noise = tf.random.normal([NUM_EXAMPLES])

  training_outputs = training_inputs * 3 + 2 + noise

  # The loss function to be optimized

  def loss(model, inputs, targets):

  error = model(inputs) - targets

  return tf.reduce_mean(tf.square(error))

  def grad(model, inputs, targets):

  with tf.GradientTape() as tape:

  loss_value = loss(model, inputs, targets)

  return tape.gradient(loss_value, [model.W, model.B])

  # Define:

  # 1. A model.

  # 2. Derivatives of a loss function with respect to model parameters.

  # 3. A strategy for updating the variables based on the derivatives.

  Model = MyModel ()

  optimizer = tf.keras.optimizers.SGD(learning_rate=0.01)

  print("Initial loss: {:.3f}".format(loss(model, training_inputs, training_outputs)))

  # Training loop

  for i in range(300):

  grads = grad(model, training_inputs, training_outputs)

  optimizer.apply_gradients(zip(grads, [model.W, model.B]))

  if i % 20 == 0:

  print("Loss at step {:03d}: {:.3f}".format(i, loss(model, training_inputs, training_outputs)))

  print("Final loss: {:.3f}".format(loss(model, training_inputs, training_outputs)))

  print("W = {}, B = {}".format(model.W.numpy(), model.B.numpy()))

  Initial loss: 68.801

  Loss at step 000: 66.129

  Loss at step 020: 30.134

  Loss at step 040: 14.026

  Loss at step 060: 6.816

  Loss at step 080: 3.589

  Loss at step 100: 2.144

  Loss at step 120: 1.497

  Loss at step 140: 1.207

  Loss at step 160: 1.078

  Loss at step 180: 1.020

  Loss at step 200: 0.994

  Loss at step 220: 0.982

  Loss at step 240: 0.977

  Loss at step 260: 0.974

  Loss at step 280: 0.973

  Final loss: 0.973

  W = 3.0180840492248535, B = 2.0045783519744873

  Objects under 6.eager mode

  # Variable that is subject

  if tf.test.is_gpu_available():

  with tf.device("gpu:0"):

  v = tf.Variable(tf.random.normal([1000, 1000]))

  v = None # v no longer takes up GPU memory

  Save Object #

  x = tf.Variable(6.0)

  checkpoint = tf.train.Checkpoint(x=x)

  x.assign(1.0)

  checkpoint.save('./ckpt/')

  x.assign(8.0)

  checkpoint.restore(tf.train.latest_checkpoint('./ckpt/'))

  print(x)

  # Model remains

  import os

  model = tf.keras.Sequential([

  tf.keras.layers.Conv2D(16,[3,3], activation='relu'),

  tf.keras.layers.GlobalAveragePooling2D(),

  tf.keras.layers.Dense(10)

  ])

  optimizer = tf.keras.optimizers.Adam(learning_rate=0.001)

  checkpoint_dir = './ck_model_dir'

  if not os.path.exists(checkpoint_dir):

  os.makedirs(checkpoint_dir)

  checkpoint_prefix = os.path.join(checkpoint_dir, "ckpt")

  root = tf.train.Checkpoint(optimizer=optimizer,

  model=model)

  root.save(checkpoint_prefix)

  root.restore(tf.train.latest_checkpoint(checkpoint_dir))

  # Object-oriented indicators

  m = tf.keras.metrics.Mean('loss')

  m(0)

  m(5)

  print(m.result()) # => 2.5

  m([8, 9])

  print(m.result()) # => 5.5

  tf.Tensor(2.5, shape=(), dtype=float32)

  tf.Tensor(5.5, shape=(), dtype=float32)

  7. Advanced automatic differentiation theme

  Dynamic Model #

  def line_search_step(fn, init_x, rate=1.0):

  with tf.GradientTape() as tape:

  # Variables are automatically recorded, but manually watch a tensor

  tape.watch(init_x)

  value = fn(init_x)

  grad = tape.gradient(value, init_x)

  grad_norm = tf.reduce_sum (grad * grad)

  init_value = value

  while value > init_value - rate * grad_norm:

  x = init_x - rate * grad

  value = fn(x)

  rate /= 2.0

  return x, value

  # Custom Gradient

  @tf.custom_gradient

  def clip_gradient_by_norm(x, norm):

  y = tf.identity(x)

  def grad_fn (dresult):

  return [tf.clip_by_norm(dresult, norm), None]

  Return y, grad_fn

  # Custom gradient may provide a numerically stable gradient

  def log1pexp(x):

  return tf.math.log(1 + tf.exp(x))

  def grad_log1pexp(x):

  with tf.GradientTape() as tape:

  tape.watch(x)

  value = log1pexp(x)

  return tape.gradient(value, x)

  print(grad_log1pexp(tf.constant(0.)).numpy())

  # However, x = 100 fails because of numerical instability.

  print(grad_log1pexp(tf.constant(100.)).numpy())

  0.5

  nan Wuxi crowd Hospital Which http://www.wxbhnkyy120.com/

  Here, log1pexp function can be used to customize a gradient analysis to simplify the derivation. Following a preceding value reuse tf.exp (x) is calculated during the transfer - it more efficient by eliminating redundant calculations:

  @tf.custom_gradient

  def log1pexp(x):

  e = tf.exp(x)

  def grad(dy):

  two return * (1 - 1 / (1 + e))

  return tf.math.log(1 + e), grad

  def grad_log1pexp(x):

  with tf.GradientTape() as tape:

  tape.watch(x)

  value = log1pexp(x)

  return tape.gradient(value, x)

  print(grad_log1pexp(tf.constant(0.)).numpy())

  print(grad_log1pexp(tf.constant(100.)).numpy())

  0.5

  1.0

  ## 8. improve performance gpu

  import time

  def measure(x, steps):

  # TensorFlow initializes a GPU the first time it's used, exclude from timing.

  tf.matmul(x, x)

  start = time.time()

  for i in range(steps):

  x = tf.matmul(x, x)

  # tf.matmul can return before completing the matrix multiplication

  # (e.g., can return after enqueing the operation on a CUDA stream).

  # The x.numpy() call below will ensure that all enqueued operations

  # have completed (and will also copy the result to host memory,

  # so we're including a little more than just the matmul operation

  # time).

  _ = x.numpy()

  end = time.time()

  return end - start

  shape = (1000, 1000)

  steps = 200

  print("Time to multiply a {} matrix by itself {} times:".format(shape, steps))

  # Run on CPU:

  with tf.device("/cpu:0"):

  print("CPU: {} secs".format(measure(tf.random.normal(shape), steps)))

  # Run on GPU, if available:

  if tf.test.is_gpu_available():

  with tf.device("/gpu:0"):

  print("GPU: {} secs".format(measure(tf.random.normal(shape), steps)))

  else:

  print("GPU: not found")

  Time to multiply a (1000, 1000) matrix by itself 200 times:

  CPU: 1.5692901611328125 secs

  GPU: not found

  if tf.test.is_gpu_available():

  x = tf.random.normal([10, 10])

  x_gpu0 = x.gpu()

  x_cpu = x.cpu()

  _ = tf.matmul(x_cpu, x_cpu) # Runs on CPU

  _ = tf.matmul(x_gpu0, x_gpu0) # Runs on GPU:0

Guess you like

Origin www.cnblogs.com/gnz49/p/11424866.html