Principle of industrial cameras detail

Disclaimer: This article is a blogger original article, shall not be reproduced without the bloggers allowed. https://blog.csdn.net/x454045816/article/details/54601920
The camera is a key component of industrial machine vision system, its most essential function is to convert optical signals into electrical signals and orderly. Chooses the appropriate camera machine vision system is designed in an important part, not only directly determines the choice of camera captured the image resolution, image quality, but also directly related to the mode of operation of the entire system.
Welcome attention to micro-channel public number "smart algorithm"!

A camera chip type:
In general, industrial cameras can be divided according to the type of chip CCD cameras and CMOS cameras, of course, there are other chips, such as Fuji's Super CCD chip production. Here we only discuss the market mainstream works CCD cameras and CMOS cameras. CCD and CMOS digital cameras are hidden inside the camera, even if you have the opportunity to see what that looks like, it is difficult to distinguish.
CCD chip camera:
CCD chip works, as shown:


After receiving the photosensitive dot light, the photosensitive member corresponding to the generated current, the current corresponding to the size of the light intensity, the photosensitive member thus direct output electrical signal is analog. In the CCD sensor, each of the photosensitive element is not further processed for this, but it will be directly output to the vertical register , spread horizontal register, and finally to form a uniform output. Since the photosensitive element generates an electric signal is too weak a plus in this process will produce a large voltage loss , can not work direct analog to digital conversion, the output data must do so in a unified amplification process - this task is performed by the CCD sensor dedicated amplifier, the amplifier after treatment, the strength of the electrical signals of each image point of the increase of the same magnitude are obtained; because only the signal amplified through an amplifier, so that less noise is produced. However, since the CCD itself can not directly convert analog signals to digital signals, and therefore need a dedicated chip analog-digital conversion processing, the final output in the form of binary digital image matrix to a specialized DSP chip.
CMOS chip camera:
CMOS works, as shown:

For CMOS sensor, the above-mentioned workflow is completely applied. CMOS sensors each photosensitive element directly integrated amplifier and analog to digital conversion logic, when the light receiving photodiode, produces an analog electrical signal, the electrical signal is first amplified in an amplifier of the photosensitive member, and then directly converted into a corresponding digital signal. In other words, in the CMOS sensor, each sensor can produce a final digital output, is sent directly after the DSP chip processing the resulting digital signals are combined, it is the problem occurring here, the CMOS sensor amplifier simulator member belonging to , the image magnification can not be guaranteed for each point are in strict conformity, so that image data representative of the original can not be enlarged photographed objects - reflected in the final output, is a lot of noise occurs in the image quality was lower than the CCD sensor , but now this technology has been greatly improved.

Second, black and white camera imaging principle:
以CCD原理为例,CCD原理并不复杂。我们可以把它想象成一个顶部被打开的记忆芯片。因此光束可以射到记忆单元中。根据"光电效应”,这些光束在记忆单元中产生负电荷(下图中右上部分)。

曝光后,这些电荷被读出,进而被相机处理单元进行预处理。从相机处理单元输出的就是一幅数字图像。

三. 彩色彩色成像原理:
CCD芯片将光子转换为电子,在这一过程当中,光子数目与电子数目互成比例。但光子还有另外一个特征值——波长(波长决定颜色),而这条信息却没有在这个过程中被转换为电子。因此,从这个意义上说,CCD芯片都可以被称为色盲。所以彩色相机的成像稍微复杂些,目前主要有两种方式:三棱镜方式和滤光片方式,下面分别介绍:
三棱镜方式:
为了获取光线的颜色信息,我们很容易想到用三棱镜将光束分成单色光,然后分别成像,对,三棱镜方式就是这个原理,如下图:

它将从镜头射入的光分成三束,每束光都由不同的内置光栅来过滤出某一种三原色,然后使用三块CCD分别感光。这些图象再合成出一个高分辨率、色彩精确的图象。如300万像素的相机就是由三块300万像素的CCD来感光。也就是可以做到同点合成,因此拍摄的照片清晰度相当高。该方法的主要困难在于其中包含的数据太多。在你照下一张照片前,必须将存储在相机的缓冲区内的数据清除并存盘。因此这类相机对其他部件的要求非常高,其价格自然也非常昂贵。
滤光片方式:
当然,为了获取光线的颜色信息,我们很容易想到用滤光片来实现,原理图如下:

在该图中,每个感光元件对应图像传感器中的一个像点,由于感光元件只能感应光的强度,无法捕获色彩信息,因此必须在感光元件上方覆盖彩色滤光片。在这方面,不同的传感器厂商有不同的解决方案,最常用的做法是覆盖RGB红绿蓝三色滤光片,以1:2:1的构成由四个像点构成一个彩色像素(即红蓝滤光片分别覆盖一个像点,剩下的两个像点都覆盖绿色滤光片),采取这种比例的原因是人眼对绿色较为敏感。而索尼的四色CCD技术则将其中的一个绿色滤光片换为翡翠绿色(英文Emerald,有些媒体称为E通道),由此组成新的R、G、B、E四色方案。不管是哪一种技术方案,都要四个像点才能够构成一个彩色像素。
从上图我们看到,经过相机处理单元之后,上图右上角中的空白值,被补上了255,这里牵涉到色彩插值,详见下:
色彩插值:
一开始我们将使用在用于成像与测量的单CCD相机(测量)一节中介绍过的数字原始图像。为了简单起见,该数字原始图像、它的源图及拜尔滤光片都被列于下图。

这里介绍两种简单的插值方式:
复制临近像素法:
填补缺失的色彩值的最简单方法就是从临近像素中获取色彩值。让我们以第二行第一个绿色像素(来自拜尔滤光片)为例(如下图中被加粗黑框之像素所示)。

在源图像中该点实际是红色,但经拜尔滤光片绿色像素过滤后色彩值变为零。我们只需要把临近红蓝像素中的红色与蓝色值(见上图)复制到该像素中,就能获得其RGB值(255,0,0)。就上图所示例子而言,插值法产生了正确的RGB值。但在实际应用当中,对于静止图像,这种简单的插值法所生成的结果是不可接受的。但由于它并不耗费多少时间,我们可以将其用于对质量标准要求不高的视频数据流中(例如视频预览)。
临近像素均值法(双线性插值):

我们可以对“复制插值法”作出的第一个改进就是使用若干临近像素的均值。如图所示,这种方法同样可以得到正确的RGB值(255,0,0)。但第二个例子指出了均值法的一个重大缺陷:均值法有低通特性,并由此将清晰的边界钝化。RGB值本应是(255,0,0),但实际上变成了(255,128,64),因此该点变成了棕橙色。
今天相机中所使用的插值法的性能要大大高于前面介绍的这两种基本方法。A Study of Spatial Color Interpolation Algorithms for Single-Detector Digital Cameras一文 对这些算法做了很好的介绍和比较。

四. 相机接口类型:
GIGE千兆网接口:
千兆网协议稳定,该接口的工业相机是近几年市场应用的重点。使用方便,连接到千兆网卡上,即能正常工作。
在千兆网卡的属性中,也有与1394中的Packet Size类似的巨帧。设置好此参数,可以达到更理想的效果。
传输距离远,可传输100米。可多台同时使用,CPU占用率小。
USB2.0接口:
所有电脑都配置有USB2.0接口,方便连接,不需要采集卡。
USB2.0接口的相机,是最早应用的数字接口之一,开发周期短,成本低廉,是目前最为普通的类型,缺点是其传输速率较慢,理论速度只有480Mb(60MB)。
在传输过程中CPU参与管理,占用及消耗资源较大。USB2.0接口不稳定,相机通常没有坚固螺丝,因此在经常运动的设备上,可能会有松动的危险。传输距离近,信号容易衰减。
USB3.0接口:
USB 3.0的设计在USB 2.0的基础上新增了两组数据总线,为了保证向下兼容,USB 3.0保留了USB 2.0的一组传输总线。
在传输协议方面,USB 3.0除了支持传统的BOT协议,新增了USB Attached SCSI Protocol (USAP),可以完全发挥出5Gbps的高速带宽优势。
由于总线标准是近几年才发布,所以协议的稳定性同样让人担心。传输距离问题,依然没有得到解决。
Camera Link接口:
需要单独的Camera Link接口,不便携,导致成本过高。传输速度是目前的工业相机中最快的一种总线类型。
一般用于高分辨率高速面阵相机,或者是线阵相机上。
传输距离近,可传输距离为10米。
1394(火线):
1394接口,在工业领域中,应用还是非常广泛的。协议、编码方式都非常不错,传输速度也比较稳定,只不过由于早期苹果的垄断,造成其没有被广泛应用。
1394接口,特别是1394B口,都有坚固的螺丝。1394接口不太方便的地方是其未能普及,因此电脑上通常不包含其接口,因此需要额外的采集卡,传输距离仅为4.5米。
占用CPU资源少,可多台同时使用,但由于接口的普及率不高,已慢慢被市场淘汰。

五. 线阵和面阵相机:
面阵:
上面我们所说的相机均属于面阵相机,相机像素是指这个相机总共有多少个感光晶片,通常用万个为单位表示,以矩阵排列,例如3百万像素、2百万像素、百万像素、40万像素。百万像素相机的像素矩阵为W*H=1000*1000。相机分辨率,指一个像素表示实际物体的大小,用um*um表示。数值越小,分辨率越高。
线阵:
线阵相机是一类特殊的视觉机器。与面阵相机相比,它的传感器只有一行感光元素,因此使高扫描频率和高分辨率成为可能。线阵相机的典型应用领域是检测连续的材料,例如金属、塑料、纸和纤维等。被检测的物体通常匀速运动 , 利用一台或多台相机对其逐行连续扫描 , 以达到对其整个表面均匀检测。可以对其图象一行一行进行处理 , 或者对由多行组成的面阵图象进行处理。另外线阵相机非常适合测量场合,这要归功于传感器的高分辨率 。

六. 相机常见参数介绍:
1. 分辨率(Resolution) :相机每次采集图像的像素点数(Pixels),对于工业数字相机一般是直接与光电传感器的像元数对应的,对于工业数字模拟相机则是取决于视频制式,PAL制为768*576,NTSC制为640*480。
2. 像素深度(Pixel Depth) :即每像素数据的位数,一般常用的是8Bit,对于工业数字数字相机一般还会有10Bit、12Bit等。
3. 最大帧率(Frame Rate)/行频(Line Rate) :相机采集传输图像的速率,对于面阵相机一般为每秒采集的帧数(Frames/Sec.),对于线阵相机机为每秒采集的行数(Hz)。
4. 曝光方式(Exposure)和快门速度(Shutter) :对于工业线阵相机都是逐行曝光的方式,可以选择固定行频和外触发同步的采集方式,曝光时间可以与行周期一致,也可以设定一个固定的时间;面阵相机有帧曝光、场曝光和滚动行曝光等几种常见方式,工业数字相机一般都提供外触发采图的功能。快门速度一般可到10微秒,高速相机还可以更快。
5. 像元尺寸(Pixel Size) :像元大小和像元数(分辨率)共同决定了相机靶面的大小。目前工业数字相机像元尺寸一般为3μm-10μm,一般像元尺寸越小,制造难度越大,图像质量也越不容易提高。
6. 光谱响应特性(Spectral Range) :是指该像元传感器对不同光波的敏感特性,一般响应范围是350nm-1000nm,一些相机在靶面前加了一个滤镜,滤除红外光线,如果系统需要对红外感光时可去掉该滤镜。


参考文献:

Guess you like

Origin blog.csdn.net/x454045816/article/details/54601920
Recommended