BERT-pytorch source code implementation to solve memory overflow problem

BERT-pytorch source code implementation to solve memory overflow problem

I believe many of you are working on the BERT model, but some people may import data directly from the transfermer model, but this method is not convenient for us to modify the model, so some people have implemented BERT in detail through pytorch, but Bo The author discovered that these codes for implementing BERT in detail had a memory overflow problem, and the blogger made improvements. With the following code, we can solve the memory overflow problem, mainly because the intermediate results are not completely released. The code is as follows:
Note: If you To solve the memory overflow problem, just focus on the del statement.


'''
  code by Tae Hwan Jung(Jeff Jung) @graykode, modify by wmathor
  Reference : https://github.com/jadore801120/attention-is-all-you-need-pytorch
         https://github.com/JayParks/transformer, https://github.com/dhlee347/pytorchic-bert
'''
import re
import math
import torch
import numpy as np
from random import *
import torch.nn as nn
import torch.optim as optim
import torch.utils.data as Data
 
import matplotlib.pyplot as plt
from data_process import get_data

setences,label,setences_test,label_test=get_data()
device = torch.device('cpu')

sentences=setences
#text = (
#    'Hello, how are you? I am Romeo.\n' # R
#    'Hello, Romeo My name is Juliet. Nice to meet you.\n' # J
#    'Nice meet you too. How are you today?\n' # R
#    'Great. My baseball team won the competition.\n' # J
#    'Oh Congratulations, Juliet\n' # R
#    'Thank you Romeo\n' # J
#    'Where are you going today?\n' # R
#    'I am going shopping. What about you?\n' # J
#    'I am going to visit my grandmother. she is not very well' # R
#)
#sentences = re.sub("[.,!?\\-]", '', text.lower()).split('\n') # filt
#print(sentences)

word_list = list(set(" ".join(setences).split())|set(" ".join(setences_test).split())) # ['hello', 'how', 'are', 'you',...]
word2idx = {
    
    '[PAD]' : 0, '[CLS]' : 1, '[SEP]' : 2, '[MASK]' : 3}
for i, w in enumerate(word_list):
    word2idx[w] = i + 4
idx2word = {
    
    i: w for i, w in enumerate(word2idx)}
vocab_size = len(word2idx)
 
token_list = list()
for sentence in setences:
    arr = [word2idx[s] for s in sentence.split()]
    token_list.append(arr)







#print(token_list)
'''
[[12, 7, 22, 5, 39, 21, 15],
 [12, 15, 13, 35, 10, 27, 34, 14, 19, 5],
 [34, 19, 5, 17, 7, 22, 5, 8],
 [33, 13, 37, 32, 28, 11, 16],
 [30, 23, 27],
 [6, 5, 15],
 [36, 22, 5, 31, 8],
 [39, 21, 31, 18, 9, 20, 5],
 [39, 21, 31, 14, 29, 13, 4, 25, 10, 26, 38, 24]]
'''
# BERT Parameters
maxlen = 30
batch_size = 6
max_pred = 5 # max tokens of prediction
n_layers = 6
n_heads = 12
d_model = 768
d_ff = 768*4 # 4*d_model, FeedForward dimension
d_k = d_v = 64  # dimension of K(=Q), V
n_segments = 3
# sample IsNext and NotNext to be same in small batch size
def make_data():
    batch = []
    for i in range(len(setences)):
        tokens_a_index =  i
        tokens_a = token_list[tokens_a_index]
        input_ids = [word2idx['[CLS]']] + tokens_a + [word2idx['[SEP]']]
        segment_ids = [0] * (1 + len(tokens_a) + 1) 
 
        # MASK LM
        n_pred = min(max_pred, max(1, int(len(input_ids) * 0.15)))  # 15 % of tokens in one sentence
        cand_maked_pos = [i for i, token in enumerate(input_ids)
                          if token != word2idx['[CLS]'] and token != word2idx['[SEP]']]  # candidate masked position
        shuffle(cand_maked_pos)

        masked_tokens, masked_pos = [], []
        for pos in cand_maked_pos[:n_pred]:
            masked_pos.append(pos)
            masked_tokens.append(input_ids[pos])
            if random() < 0.8:  # 80%
                input_ids[pos] = word2idx['[MASK]']  # make mask
            elif random() > 0.9:  # 10%
                index = randint(0, vocab_size - 1)  # random index in vocabulary
                while index < 4:  # can't involve 'CLS', 'SEP', 'PAD'
                    index = randint(0, vocab_size - 1)
                input_ids[pos] = index  # replace
 
        # Zero Paddings
        n_pad = maxlen - len(input_ids)
        input_ids.extend([0] * n_pad)
        segment_ids.extend([0] * n_pad)
 
        # Zero Padding (100% - 15%) tokens
        if max_pred > n_pred:
            n_pad = max_pred - n_pred
            masked_tokens.extend([0] * n_pad)
            masked_pos.extend([0] * n_pad)
 
       
        batch.append([input_ids, segment_ids, masked_tokens, masked_pos, label[tokens_a_index]])  # IsNext
    return batch
batch = make_data()
input_ids, segment_ids, masked_tokens, masked_pos, isNext = zip(*batch)
'''>>> a = [1,2,3]
b = [4,5,6]
zipped = zip(a,b)     # 打包为元组的列表
[(1, 4), (2, 5), (3, 6)]
zip(*zipped)          # 与 zip 相反,可理解为解压,为zip的逆过程,可用于矩阵的转置
[(1, 2, 3), (4, 5, 6)]
'''
input_ids, segment_ids, masked_tokens, masked_pos, isNext = \
    torch.LongTensor(input_ids), torch.LongTensor(segment_ids), torch.LongTensor(masked_tokens), \
    torch.LongTensor(masked_pos), torch.LongTensor(isNext)
 
 
class MyDataSet(Data.Dataset):
    def __init__(self, input_ids, segment_ids, masked_tokens, masked_pos, isNext):
        self.input_ids = input_ids
        self.segment_ids = segment_ids
        self.masked_tokens = masked_tokens
        self.masked_pos = masked_pos
        self.isNext = isNext
 
    def __len__(self):
        return len(self.input_ids)
 
    def __getitem__(self, idx):
        return self.input_ids[idx], self.segment_ids[idx], self.masked_tokens[idx], self.masked_pos[idx], self.isNext[
            idx]
 
loader = Data.DataLoader(MyDataSet(input_ids, segment_ids, masked_tokens, masked_pos, isNext), batch_size, True)
def get_attn_pad_mask(seq_q, seq_k):
    batch_size, seq_len = seq_q.size()   #[batch_size,maxlen]
    # eq(zero) is PAD token
    pad_attn_mask = seq_q.data.eq(0).unsqueeze(1)  # [batch_size, 1, seq_len]
    return pad_attn_mask.expand(batch_size, seq_len, seq_len)  # [batch_size, seq_len, seq_len]
 
def gelu(x):
    return x * 0.5 * (1.0 + torch.erf(x / math.sqrt(2.0)))
 
class Embedding(nn.Module):
    def __init__(self):
        super(Embedding, self).__init__()
        self.tok_embed = nn.Embedding(vocab_size, d_model)  # token embedding
        self.pos_embed = nn.Embedding(maxlen, d_model)  # position embedding
        self.seg_embed = nn.Embedding(n_segments, d_model)  # segment(token type) embedding
        self.norm = nn.LayerNorm(d_model)
 
    def forward(self, x, seg):
        seq_len = x.size(1)
        pos = torch.arange(seq_len, dtype=torch.long)
        # print("pos:",pos)
        '''pos: tensor([ 0,  1,  2,  3,  4,  5,  6,  7,  8,  9, 10, 11, 12, 13, 14, 15, 16, 17,
        18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29])'''
        pos = pos.unsqueeze(0).expand_as(x).to(device)  # [seq_len] -> [batch_size, seq_len]
        # print("pos_batch:", pos)
        embedding = self.tok_embed(x) + self.pos_embed(pos) + self.seg_embed(seg)
        del pos,x, seg
        return self.norm(embedding)
 
class ScaledDotProductAttention(nn.Module):
    def __init__(self):
        super(ScaledDotProductAttention, self).__init__()
 
    def forward(self, Q, K, V, attn_mask):
        scores = torch.matmul(Q, K.transpose(-1, -2)) / np.sqrt(d_k) # scores : [batch_size, n_heads, seq_len, seq_len]
        scores.masked_fill_(attn_mask, -1e9) # Fills elements of self tensor with value where mask is one.
        attn = nn.Softmax(dim=-1)(scores)
        context = torch.matmul(attn, V)
        del attn,scores,Q, K, V,attn_mask
        return context
 
class MultiHeadAttention(nn.Module):
    def __init__(self):
        super(MultiHeadAttention, self).__init__()
        self.W_Q = nn.Linear(d_model, d_k * n_heads)
        self.W_K = nn.Linear(d_model, d_k * n_heads)
        self.W_V = nn.Linear(d_model, d_v * n_heads)
    def forward(self, Q, K, V, attn_mask):
        # q: [batch_size, seq_len, d_model], k: [batch_size, seq_len, d_model], v: [batch_size, seq_len, d_model]
        residual, batch_size = Q, Q.size(0)
        residual=residual.to(device)
       
        # (B, S, D) -proj-> (B, S, D) -split-> (B, S, H, W) -trans-> (B, H, S, W)
        q_s = self.W_Q(Q).view(batch_size, -1, n_heads, d_k).transpose(1,2)  # q_s: [batch_size, n_heads, seq_len, d_k]
        k_s = self.W_K(K).view(batch_size, -1, n_heads, d_k).transpose(1,2)  # k_s: [batch_size, n_heads, seq_len, d_k]
        v_s = self.W_V(V).view(batch_size, -1, n_heads, d_v).transpose(1,2)  # v_s: [batch_size, n_heads, seq_len, d_v]
 
        attn_mask = attn_mask.unsqueeze(1).repeat(1, n_heads, 1, 1) # attn_mask : [batch_size, n_heads, seq_len, seq_len]
 
        # context: [batch_size, n_heads, seq_len, d_v], attn: [batch_size, n_heads, seq_len, seq_len]
        context = ScaledDotProductAttention()(q_s, k_s, v_s, attn_mask)
        context = context.transpose(1, 2).contiguous().view(batch_size, -1, n_heads * d_v)# context: [batch_size, seq_len, n_heads, d_v]
        output = nn.Linear(n_heads * d_v, d_model).to(device)(context)
        del context,attn_mask,q_s,k_s,v_s
        
        return nn.LayerNorm(d_model).to(device)(output + residual) # output: [batch_size, seq_len, d_model]
 
class PoswiseFeedForwardNet(nn.Module):
    def __init__(self):
        super(PoswiseFeedForwardNet, self).__init__()
        self.fc1 = nn.Linear(d_model, d_ff)
        self.fc2 = nn.Linear(d_ff, d_model)
 
    def forward(self, x):
        # (batch_size, seq_len, d_model) -> (batch_size, seq_len, d_ff) -> (batch_size, seq_len, d_model)
       
        return self.fc2(gelu(self.fc1(x)))
 
class EncoderLayer(nn.Module):
    def __init__(self):
        super(EncoderLayer, self).__init__()
        self.enc_self_attn = MultiHeadAttention()
        self.pos_ffn = PoswiseFeedForwardNet()
 
    def forward(self, enc_inputs, enc_self_attn_mask):
        enc_outputs = self.enc_self_attn(enc_inputs, enc_inputs, enc_inputs, enc_self_attn_mask) # enc_inputs to same Q,K,V
        enc_outputs = self.pos_ffn(enc_outputs) # enc_outputs: [batch_size, seq_len, d_model]
        del enc_self_attn_mask,enc_inputs
        return enc_outputs

class BERT(nn.Module):
    def __init__(self):
        super(BERT, self).__init__()
        self.embedding = Embedding()
        self.layers = nn.ModuleList([EncoderLayer() for _ in range(n_layers)])
        self.fc = nn.Sequential(
            nn.Linear(d_model, d_model),
            nn.Dropout(0.5),
            nn.Tanh(),
        )
        self.classifier = nn.Linear(d_model, 3)
        self.linear = nn.Linear(d_model, d_model)
        self.activ2 = gelu
        # fc2 is shared with embedding layer
        embed_weight = self.embedding.tok_embed.weight
        self.fc2 = nn.Linear(d_model, vocab_size, bias=False)
        self.fc2.weight = embed_weight
 
    def forward(self, input_ids, segment_ids, masked_pos):
        output = self.embedding(input_ids, segment_ids) # [bach_size, seq_len, d_model]
        enc_self_attn_mask = get_attn_pad_mask(input_ids, input_ids) # [batch_size, maxlen, maxlen]
        for layer in self.layers:
            # output: [batch_size, max_len, d_model]
            output = layer(output, enc_self_attn_mask)
        # it will be decided by first token(CLS)
        '''
         (fc): Sequential(
            (0): Linear(in_features=768, out_features=768, bias=True)
            (1): Dropout(p=0.5, inplace=False)
            (2): Tanh()
            )
          (classifier): Linear(in_features=768, out_features=2, bias=True)
          (linear): Linear(in_features=768, out_features=768, bias=True)
          (fc2): Linear(in_features=768, out_features=40, bias=False)
        '''
        # logits_clsf :根据[CLS]预测是否是连续的句子,[CLS]在第一维
        h_pooled = self.fc(output[:, 0]) # [batch_size, d_model]
        logits_clsf = self.classifier(h_pooled) # [batch_size, 2] predict isNext
 
        masked_pos = masked_pos[:, :, None].expand(-1, -1, d_model) # [batch_size, max_pred, d_model]
        h_masked = torch.gather(output, 1, masked_pos) # masking position [batch_size, max_pred, d_model]
        h_masked = self.activ2(self.linear(h_masked)) # [batch_size, max_pred, d_model]
        #logits_lm:预测mask的token
        logits_lm = self.fc2(h_masked) # [batch_size, max_pred, vocab_size]
        del h_masked,h_pooled,output,enc_self_attn_mask,masked_pos,input_ids,segment_ids
        return logits_lm, logits_clsf
model = BERT().to(device)
# print(model)
criterion = nn.CrossEntropyLoss()
optimizer = optim.Adam(model.parameters(), lr=0.000001)
#out = torch.gather(input, dim, index)
index = torch.from_numpy(np.array([[1, 2, 0], [2, 0, 1]])).type(torch.LongTensor)
index = index[:, :, None].expand(-1, -1, 10)
loss_list=[]
for epoch in range(10):
    loss_sum=0
    for input_ids, segment_ids, masked_tokens, masked_pos, isNext in loader:
   
      
      logits_lm, logits_clsf = model(input_ids, segment_ids, masked_pos)
      #logits_lm:[batch_size,max_pred,vocab_size] -> [batch_size*max_pred,vocab_size],batch_size*max_pred个词。每个词都有vocab_size种可能。
      loss_lm = criterion(logits_lm.view(-1, vocab_size), masked_tokens.view(-1)) # for masked LM
      loss_lm = (loss_lm.float()).mean()
    #  isNext=isNext.to(device)
      loss_clsf = criterion(logits_clsf, isNext) # for sentence classification
      loss = loss_lm + loss_clsf
      loss_sum=loss_sum+loss
      loss_list.append(float(loss))

      print('Epoch:', '%04d' % (epoch + 1), 'loss =', '{:.6f}'.format(loss))
      optimizer.zero_grad()
      loss.backward()
      optimizer.step()
      del loss, logits_clsf, input_ids,segment_ids,masked_tokens,masked_pos,logits_lm,isNext,loss_clsf,loss_lm
     
    

# Predict mask tokens ans isNext



print('test')

token_list=[]

for sentence in setences_test:
    arr = [word2idx[s] for s in sentence.split()]
    token_list.append(arr)


def make_data_test():
    batch = []
  
    for i in range(len(setences_test)):
        tokens_a_index =  i
        tokens_a = token_list[tokens_a_index]
        input_ids = [word2idx['[CLS]']] + tokens_a + [word2idx['[SEP]']]
        segment_ids = [0] * (1 + len(tokens_a) + 1) 
 
        # MASK LM
        n_pred = min(max_pred, max(1, int(len(input_ids) * 0.15)))  # 15 % of tokens in one sentence
        cand_maked_pos = [i for i, token in enumerate(input_ids)
                          if token != word2idx['[CLS]'] and token != word2idx['[SEP]']]  # candidate masked position
        shuffle(cand_maked_pos)

        masked_tokens, masked_pos = [], []
        for pos in cand_maked_pos[:n_pred]:
            masked_pos.append(pos)
            masked_tokens.append(input_ids[pos])
            if random() < 0.8:  # 80%
                input_ids[pos] = word2idx['[MASK]']  # make mask
            elif random() > 0.9:  # 10%
                index = randint(0, vocab_size - 1)  # random index in vocabulary
                while index < 4:  # can't involve 'CLS', 'SEP', 'PAD'
                    index = randint(0, vocab_size - 1)
                input_ids[pos] = index  # replace
 
        # Zero Paddings
        n_pad = maxlen - len(input_ids)
        input_ids.extend([0] * n_pad)
        segment_ids.extend([0] * n_pad)
 
        # Zero Padding (100% - 15%) tokens
        if max_pred > n_pred:
            n_pad = max_pred - n_pred
            masked_tokens.extend([0] * n_pad)
            masked_pos.extend([0] * n_pad)
 
       
        batch.append([input_ids, segment_ids, masked_tokens, masked_pos, label_test[tokens_a_index]])  # IsNext
          
      
          
    return batch
# Proprecessing Finished
 
batch = make_data_test()
input_ids, segment_ids, masked_tokens, masked_pos, isNext = zip(*batch)
'''>>> a = [1,2,3]
b = [4,5,6]
zipped = zip(a,b)     # 打包为元组的列表
[(1, 4), (2, 5), (3, 6)]
zip(*zipped)          # 与 zip 相反,可理解为解压,为zip的逆过程,可用于矩阵的转置
[(1, 2, 3), (4, 5, 6)]
'''
input_ids, segment_ids, masked_tokens, masked_pos, isNext = \
    torch.LongTensor(input_ids), torch.LongTensor(segment_ids), torch.LongTensor(masked_tokens), \
    torch.LongTensor(masked_pos), torch.LongTensor(isNext)
 
predict_list=[]

for i in range(len(batch)):

    input_ids, segment_ids, masked_tokens, masked_pos, isNext = batch[0]

    print([idx2word[w] for w in input_ids if idx2word[w] != '[PAD]'])
 
    logits_lm, logits_clsf = model(torch.LongTensor([input_ids]), \
                     torch.LongTensor([segment_ids]), torch.LongTensor([masked_pos]))


    logits_lm = logits_lm.data.max(2)[1][0].data.numpy()
    print('masked tokens list : ',[pos for pos in masked_tokens if pos != 0])
    print('predict masked tokens list : ',[pos for pos in logits_lm if pos != 0])


 
    logits_clsf = logits_clsf.data.max(1)[1].data.numpy()[0]
    print('isNext : ', isNext )
    print('predict isNext : ', logits_clsf)
    predict_list.append(logits_clsf)


test_loss = 0
correct = 0
total = 0
target_num =[0,0,0]
predict_num = [0,0,0]
p=0
acc_num =[0,0,0]

for i in label_test:
    target_num[i]+=1

for i in predict_list:
       
      #  print(i.argmax())
        index=int(i)
        if index in [0,1,2]:
            predict_num[index]+=1
    #    print(id2word[index],id2word[p])
       
        if index==label_test[p]:
           
           
            acc_num[index]+=1
        p=p+1


#print(target_num)
#print(predict_num)
#print(acc_num)
recallz=0
precisionz=0
accuracyz=0
F1z=0

ps=0
rs=0
for i in range(3):
    if target_num[i]!=0:
        recallz=acc_num[i]/target_num[i]
    else:
        recallz=0
    if predict_num[i]!=0:
         precisionz=acc_num[i]/predict_num[i]
    else:
        precisionz=0
    ps=ps+precisionz
    rs=rs+recallz
    if recallz+precisionz!=0:
         F1z=2*recallz*precisionz/(recallz+precisionz)+F1z

#recall = [acc_num[i]/target_num[i] for i in range(3)]

#precision = [acc_num[i]/predict_num[i] for i in range(3)]

#F1 = [2*recall[i]*precision[i]/(recall[i]+precision[i]) for i in range(3)]

print()
accuracy = sum(acc_num)/sum(target_num) 


# 打印格式方便复制
print('recall:',rs/3)
print('precision:',ps/3)
print('F1:',F1z/3)
print('accuracy',accuracy)

plt.plot(loss_list,label='BERT')
plt.legend()
plt.title('loss-epoch')
plt.show()

Guess you like

Origin blog.csdn.net/weixin_43327597/article/details/134612625