On-Road Intelligent Vehicles——Motion Planning for Intelligent Transportation Systems

Author: Rahul Kala, 2016

Road Intelligent Vehicles: Motion planning of intelligent transportation systems involves autonomous vehicle technology, with special attention to navigation and planning, and is divided into three parts. The first part involves using different sensors to sense the environment and then mapping multi-domain perception to map the operational scenario, including topics such as proximity sensors that provide distance to obstacles, vision cameras, and computer vision techniques that can be used to preprocess images and extract relevant features. , and uses classification techniques such as neural networks and support vector machines to identify roads, lanes, vehicles, obstacles, traffic lights, signs, and pedestrians.

With a detailed understanding of the technology behind the vehicle, the second part of the book focuses on the problem of motion planning. A number of planning techniques are discussed and adapted to multi-vehicle traffic scenarios, including the use of sampling-based methods consisting of genetic algorithms and fast exploration of random trees, and graph search-based methods, including hierarchical decomposition of algorithms and for limited exploration Heuristic selection of nodes, based on reactive planning methods, including fuzzy-based planning, potential field-based planning, and planning based on elastic strips and logic.

The third part of the book covers the macro concepts related to intelligent transportation systems, discussing various topics and concepts related to transportation systems, including the description of traffic flow, the basic theory behind transportation systems, and the generation of shock waves. Comprehensive coverage of autonomous vehicles and intelligent transportation systems; provides detailed coverage of challenging problems in navigation and planning; teaches how to compare, contrast, and differentiate navigation algorithms.

Original book:

Contents:

Acknowledgement
    1. Introduction
    1.1. Introduction
    1.2. Why Autonomous Vehicles?
    1.3. A Mobile Robot on the Road
    1.4. Artificial Intelligence and Planning
    1.5. Fully Autonomous and Semi-Autonomous Vehicles
    1.6. A Network of Autonomous Vehicles
    1.7. Autonomous Vehicles in Action
    1.8. Other Types of Robots
    1.9. Into the Future
    1.10. Summary
2. Basics of Autonomous Vehicles
    2.1. Introduction
    2.2. Hardware
    2.3. Software
    2.4. Localization
    2.5. Control
    2.6. Summary
3. Perception in Autonomous Vehicles
    3.1. Introduction
    3.2. Perception
    3.3. Computer Vision
    3.4. Recognition
    3.5. Tracking and Optical Flow
    3.6. Vision for General Navigation
    3.7. Summary
4. Advanced Driver Assistance Systems
    4.1. Introduction
    4.2. Information-Based Assistance Systems
    4.3. Manipulation-Based Assistance Systems
    4.4. Feedback Modalities to Driver
    4.5. Multi-Vehicle Systems
    4.6. Communication
    4.7. Summary
5. Introduction to Planning
    5.1. Introduction
    5.2. Layers of Planning
    5.3. Types of Traffic
    5.4. Motion-Planning Primitives
    5.5. Multirobot Motion Planning
    5.6. Motion Planning for Autonomous Vehicles
    5.7. Planning for Special Scenarios
    5.8. Summary
6. Optimization-Based Planning
    6.1. Introduction
    6.2. A Brief Overview of Literature
    6.3. A Primer on Genetic Algorithm (GA)
    6.4. Motion Planning with Genetic Algorithm
    6.5. Coordination
    6.6. Results
    6.7. Summary
7. Sampling-Based Planning
    7.1. Introduction    
    7.2. A Brief Overview of Literature
    7.3. A Primer on Rapidly Exploring Random Trees (RRT)
        Algorithm 7.1: RRT(source, goal)
        Algorithm 7.2: RRT-Connect (source, goal)
        Algorithm 7.3: Bi-directional-RRT (source, goal)
    7.4. Solution With RRT
        Algorithm 7.4: Plan (vehicles, map)
        Algorithm 7.5: RRT (source, segment)
    7.5. Results
    7.6. Solution With RRT-Connect
        Algorithm 7.6: RRT-Connect (source, time, vi)
        Algorithm 7.7: CheckConnect (tree, node)
        Algorithm 7.8: LocalOptimization(τ)
        Algorithm 7.9: Plan (road segment, time)
    7.7. Results
    7.8. Summary
8. Graph Search-Based Hierarchical Planning
    8.1. Introduction
    8.2. A Brief Overview of Literature
    8.3. A Primer on Graph Search
        Algorithm 8.1: Uniform Cost Search (G<V,E>, S, GoalTest)
        Algorithm 8.2: PrintPath(n)
        Algorithm 8.3: A∗ Search (G<V,E>, S, GoalTest)
    8.4. Multilayer Planning
    8.5. Hierarchy 1: Path Computation
    8.6. Hierarchy 2: Pathway Selection
        Algorithm 8.4: getPathwaySegments
        Algorithm 8.5: getPathway
    8.7. Hierarchy 3: Pathway Distribution
        hm 8.6: getDistributedPathway
    8.8. Hierarchy 4: Trajectory Generation
        Algorithm 8.7: getTrajectory
    8.9. Algorithm
        Algorithm 8.8: RoadSegmentPlan
    8.10. Results
    8.11. Summary
9. Using Heuristics in Graph Search-Based Planning
    9.1. Introduction
    9.2. A Brief Overview of Literature
    9.3. Dynamic Distributed Lanes for a Single Vehicle
        Algorithm 9.1: Uniform Cost Search for a Single Vehicle
        Algorithm 9.2: Expansion for a Single Vehicle
    9.4. Dynamic Distributed Lanes for Multiple Vehicles
        Algorithm 9.3: Getting Number of Vehicles Requiring Independent Lanes
        Algorithm 9.4: Division of the Road Into Lanes
        Algorithm 9.5: Trajectory Generation From the Current State to the Expanded State
        Algorithm 9.6: Free-State Expansion Strategy
        Algorithm 9.7: Vehicle-Following Expansion Strategy
        Algorithm 9.8: Wait for Vehicle Expansion Strategy
        Algorithm 9.9: Selection of Expansion Strategy
    9.5. Results
    9.6. Summary
10. Fuzzy-Based Planning
    10.1. Introduction
    10.2. A Brief Overview of Literature
    10.3. A Primer on Fuzzy Logic
    10.4. Fuzzy Logic for Planning
    10.5. Evolution of the Fuzzy Inference System
    10.6. Results
    10.7. Summary
11. Potential-Based Planning
    11.1. Introduction
    11.2. A Brief Overview of Literature
    11.3. A Primer on Artificial Potential Field
    11.4. Lateral Potentials for Planning
    11.5. Results for Lateral Potentials
    11.6. A Primer on Elastic Strip
    11.7. Problem Modelling With an Elastic Strip
    11.8. Solution With an Elastic Strip
        Algorithm 11.1: Extend1(τ, τstrat,vq)
        Algorithm 11.2: Extend(τ, τstrat, vq)
        Algorithm 11.3: Plan(τobs, τ, vq)
    11.9. Results With an Elastic Strip
    11.10. Summary
12. Logic-Based Planning
    12.1. Introduction
    12.2. A Brief Overview of Literature
    12.3. Problem and Solution Modelling
    12.4. Behaviours
        Algorithm 12.1: ObstacleAvoidance(Ri, map)
    12.5. Single-Lane Overtaking
    12.6. Complete Algorithm
        Algorithm 12.2: Plan(Vehicle Ri, Map, Previous Plan τ)
    12.7. Results
    12.8. Summary
13. Basics of Intelligent Transportation Systems
    13.1. Introduction
    13.2. Traffic Systems and Traffic Flow
    13.3. Traffic Simulation
    13.4. Intelligent Constituents of the Transportation System
    13.5. Summary
14. Intelligent Transportation Systems With Diverse Vehicles
    14.1. Introduction
    14.2. A Brief Overview of Literature
    14.3. Semiautonomous Intelligent Transportation System for Diverse Vehicles
    14.4. Congestion Avoidance in City Traffic
    14.5. Summary
15. Reaching Destination Before Deadline With Intelligent Transportation Systems
    15.1. Introduction
    15.2. A Brief Overview of Literature
    15.3. Computing Journey Start Times
    15.4. Algorithm for Computing Journey Start Times
    15.5. Cooperative Transportation Systems
    15.6. Results
    15.7. Summary
16. Conclusions
    16.1. Conclusions
    16.2. Autonomous Vehicles
    16.3. Intelligent Transportation Systems
    16.4. Limitations
    16.5. Closing Remarks
Index

The source code of the algorithm implemented in the book:

Guess you like

Origin blog.csdn.net/subin0403/article/details/134672386