Parameter estimation (3) Interval estimation

The concept of interval estimation

For unknown parameters, in addition to caring about its point estimate, sometimes we also need to estimate a range of it and the degree of confidence that this range contains the true value of the parameter. This range is usually given in the form of an interval, called a confidence interval. This form of estimation is calledinterval estimation.

设总体 X X X's distribution function F ( x ; θ ) F(x;\theta) F(x;θ) θ \theta θ Unknown number, X 1 , . . . , X n X_1,...,X_n X1,...,Xn is from the population X X Sample of X. For a given value α ( 0 < α < 1 ) \alpha(0<\alpha<1) α(0<a<1), young existence measurement θ ~ ( X 1 , . . . , X n ) \underline{\theta}(X_1,...,X_n) θ(X1,...,Xn) θ ˉ ( X 1 , . . . , X n ) \bar{\theta}(X_1,...,X_n) iˉ(X1,...,Xn),使得 P { θ ‾ ( X 1 , . . . , X n ) < θ < θ ˉ ( X 1 , . . . , X n ) } ≥ 1 − α P\{\underline{\theta}(X_1,...,X_n)<\theta<\bar{\theta}(X_1,...,X_n)\} \ge 1-\alpha P{ θ(X1,...,Xn)<i<iˉ(X1,...,Xn)}1α nomenclature ( θ ‾ , θ ˉ ) (\underline{\theta},\bar{\theta}) < /span>(θ,iˉ) Bosin number θ \theta The confidence of θ is 1 − α 1-\alpha 1α position, θ ‾ , θ ˉ \underline{\theta}, \bar{\theta} θiˉ are called upper and lower confidence limits respectively.

Usually the unknown parameters can be found according to the following ideas θ \theta Confidence interval for θ:

  1. Unknown number θ \theta Starting from the point estimator of θ, construct a sample containing only samples X 1 , . . . , X n X_1,..., X_n X1,...,Xn Number of sums θ \theta θ's function G = G ( X 1 , . . . , X n ; θ ) G=G(X_1,. ..,X_n;\theta) G=G(X1,...,Xn;θ), inside G G The probability distribution of G should be easily determined and contain no unknown parameters ( G G Galso namepivot amount);
  2. Confidence for the given 1 − α 1-\alpha 1α,由等式 P { c < G ( X 1 , . . . , X n ; θ ) < d } = 1 − α P\{c<G(X_1,...,X_n;\theta)<d\}=1-\alpha P{ c<G(X1,...,Xn;θ)<d}=1α Appropriate determination constant c , d c,d c,d
  3. 把不等式 c < G ( X 1 , . . . , X n ; θ ) < d c<G(X_1,...,X_n;\theta)<d c<G(X1,...,Xn;θ)<d Equal inequality θ ‾ ( X 1 , . . . , X n ) < θ < θ ˉ ( X 1 , . . . , X n ) \underline{\theta}(X_1,...,X_n)<\theta<\bar{\theta}(X_1,...,X_n) θ(X1,...,Xn)<i<iˉ(X1,...,Xn) Number of arrivals at this time θ \theta The confidence of θ is 1 − α 1-\alpha 1α ( θ ‾ , θ ˉ ) (\underline{\theta},\bar{\theta}) < /span>(θ,iˉ)

Above calculation reference number θ \theta The method of confidence interval for θ is calledpivot measure method.

The case of a normal population

Definition X ∼ N ( µ , σ 2 ) X \sim N(\mu,\sigma^2) XN(μ,p2) X 1 , . . . , X n X_1,...,X_n X1,...,Xn 为总体 X X X の样本,XˉS2 are the sample mean and corrected sample variance respectively. Discuss below μ , σ 2 \mu,\sigma^2 μ,pInterval estimate of 2.

μ \muInterval estimation of μ

(1) We difference σ 2 \sigma^2 p2 已智时,因为 X ˉ \bar{X} Xˉ μ \mu Unbiased estimate of μ, thus constructing the pivot quantity U = n ( X ˉ − μ ) σ ∼ N ( 0 , 1 ) U=\frac{\sqrt{n}(\bar{X}-\mu)}{\sigma}\sim N(0,1) IN=pn (Xˉμ)N(0,1) μ \mu The confidence of μ is 1 − α 1-\alpha 1α 的置信区间为 ( X ˉ − σ n u α / 2 , X ˉ + σ n u α / 2 ) \left(\bar{X}-\frac{\sigma}{\sqrt{n}}u_{\alpha/2},\bar{X}+\frac{\sigma}{\sqrt{n}}u_{\alpha/2}\right) (Xˉn σinα/2,Xˉ+n σinα/2)

(2) We difference σ 2 \sigma^2 p2 Unknown time,Be careful S ∗ 2 S^{*2} S2 σ 2 \sigma^2 pUnbiased estimate of 2 as S ∗ S^* S Exchange (1) Central exchange σ \sigma σ, the pivot quantity can be obtained T = n ( X ˉ − μ ) S ∗ ∼ t ( n − 1 ) T= \frac{\sqrt{n}(\bar{X}-\mu)}{S^*}\sim t(n-1) T=Sn (Xˉμ)t(n1) μ \mu The confidence of μ is 1 − α 1-\alpha 1α 的置信区间为 ( X ˉ − S ∗ n t α / 2 ( n − 1 ) , X ˉ + S ∗ n t α / 2 ( n − 1 ) ) \left(\bar{X}-\frac{S^*}{\sqrt{n}}t_{\alpha/2}(n-1),\bar{X}+\frac{S^*}{\sqrt{n}}t_{\alpha/2}(n-1)\right) (Xˉn Stα/2(n1),Xˉ+n Stα/2(n1))

σ 2 \sigma^2 pInterval estimate of 2

这りJust讨论 μ \mu μ unknown time σ 2 \sigma^2 pInterval estimate of 2.

because S ∗ 2 S^{*2} S2 σ 2 \sigma^2 pUnbiased estimate of 2, so construct the pivot quantity χ 2 = 1 σ 2 ∑ i = 1 n ( X i − X ˉ ) 2 = ( n − 1 ) S ∗ 2 σ 2 ∼ χ 2 ( n − 1 ) \chi^2=\frac{1}{\sigma^2}\sum_{i=1}^n (X_i- \bar{X})^2=\frac{(n-1)S^{*2}}{\sigma^2} \sim \chi^2(n-1) h2=p21i=1n(XiXˉ)2=p2(n1)S2h2(n1) σ 2 \sigma^2 p2 Placement confidence 1 − α 1-\alpha 1α Differentiation and Range ( ( n − 1 ) S ∗ 2 χ α / 2 2 ( n − 1 ) , ( n − 1 ) S ∗ 2 χ 1 − α / 2 2 ( n − 1 ) ) \left(\frac{(n-1)S^{*2}}{\chi^2_{\alpha/2}(n -1)},\frac{(n-1)S^{*2}}{\chi^2_{1-\alpha/2}(n-1)}\right) (hα/22(n1)(n1)S2,h1α/22(n1)(n1)S2)

The case of two normal populations

Definition X ∼ N ( µ 1 , σ 1 2 ) X \sim N(\mu_1,\sigma^2_1) XN(μ1,p12),unless Y ∼ N ( μ 2 , σ 2 2 ) Y \sim N(\mu_2,\sigma^2_2) ANDN(μ2,p22) ( X 1 , . . . , X n 1 ) T (X_1,...,X_{n_1})^T (X1,...,Xn1)T ( Y 1 , . . . , Y n 2 ) T (Y_1,...,Y_{n_2})^T (Y1,...,ANDn2)T Separate body from self X , Y X, Y X, Y samples, and it is assumed that the two samples are independent of each other. Note X ˉ , Y ˉ \bar{X},\bar{Y} Xˉ,ANDˉ is the sample mean of each of the two samples, S 1 n 1 ∗ 2 , S 2 n 2 ∗ 2 S^{*2 }_{1n_1},S^{*2}_{2n_2} S1n12,S2n22 is the corrected variance of each of the two samples. For a given confidence level 1 − α 1-\alpha 1α,要手机 μ 1 − μ 2 , σ 1 2 / σ 2 2 \mu_1-\mu_2,\ \sigma_1^ 2/\sigma_2^2 m1m2, p12/σ22interval estimate.

μ 1 − μ 2 \mu_1-\mu_2m1m2interval estimate of

(1) σ 1 2 \sigma_1^2 p12 σ 2 2 \sigma_2^2 p22All are known.

图像枢長量 U = X ˉ − Y ˉ − ( μ 1 − μ 2 ) σ 1 2 n 1 + σ 2 2 n 2 ∼ N ( 0 , 1 ) U=\frac{\bar{X}}\bar{Y}-(\mu_1-\mu_2)}{\sqrt{\frac{\sigma_1^2}{n_1}+\frac{\sigma_2^2} {n_2}}} \sim N(0,1)IN=n1p12+n2p22 XˉANDˉ(μ1m2)N(0,1) μ 1 − μ 2 \mu_1-\mu_2 m1m2The confidence of is 1 − α 1-\alpha 1α Differentiation and expansion ( ( X ˉ − Y ˉ ) ∓ u α / 2 σ 1 2 n 1 + σ 2 2 n 2 ) \left((\bar{X}-\bar{Y}) \mp u_{\alpha/2} \sqrt{\frac{\sigma_1^2}{n_1}+\frac{\sigma_2^2 }{n_2}}\right) (XˉANDˉ)inα/2n1p12+n2p22

(2) σ 1 2 = σ 2 2 = σ 2 \sigma_1^2=\sigma_2^2=\sigma^2 p12=p22=p2,但 σ 2 \sigma^2 p2 Unknown.

构造枢轴量 T = X ˉ − Y ˉ − ( μ 1 − μ 2 ) S w 1 n 1 + 1 n 2 ∼ t ( n 1 + n 2 − 2 ) T=\frac{\bar{X}-\bar{Y}-(\mu_1-\mu_2)}{S_w \sqrt{\frac{1}{n_1}+\frac{1}{n_2}}} \sim t(n_1+n_2-2) T=Swn11+n21 XˉANDˉ(μ1m2)t(n1+n22) inside S w = ( n 1 − 1 ) S 1 n 1 ∗ 2 + ( n 2 − 1 ) S 2 n 2 ∗ 2 n 1 + n 2 − 2 S_w=\sqrt{\frac{(n_1-1)S^{*2}_{1n_1}+(n_2-1)S ^{*2}_{2n_2}}{n_1+n_2-2}} Sw=n1+n22(n11)S1n12+(n21)S2n22 μ 1 − μ 2 \mu_1-\mu_2 m1m2The confidence of is 1 − α 1-\alpha 1α 的置信区间为 ( ( X ˉ − Y ˉ ) ∓ t α / 2 ( n 1 + n 2 − 2 ) S w 1 n 1 + 1 n 2 ) \left((\bar{X}-\bar{Y}) \mp t_{\alpha/2}(n_1+n_2-2)S_w \sqrt{\frac{1}{n_1}+\frac{1}{n_2}}\right) ((XˉANDˉ)tα/2(n1+n22)Swn11+n21 )

(3) σ 1 2 \sigma_1^2 p12 σ 2 2 \sigma_2^2 p22 Unknown, however n 1 = n 2 = n n_1=n_2=n n1=n2=n

Z i = X i − Y i ∼ N ( μ 1 − μ 2 , σ 1 2 + σ 2 2 ), i = 1 , 2 , . . . , n Z_i=X_i-Y_i \sim N(\mu_1-\mu_2,\sigma_1^2+\sigma_2^2),i=1,2,...,n WITHi=XiANDiN(μ1m2,p12+p22),i=1,2,...,n,故 μ 1 − μ 2 \mu_1-\mu_2 m1m2The confidence of is 1 − α 1-\alpha 1The confidence interval of α is ( Z ˉ ∓ S Z ∗ n t α / 2 ( n − 1 ) ) \left(\bar{ Z} \mp \frac{S_Z^*}{\sqrt{n}} t_{\alpha/2}(n-1)\right) (WITHˉn SWITHtα/2(n1)) 其中 Z ˉ = X ˉ − Y ˉ , S Z ∗ = 1 n − 1 ∑ i = 1 n ( Z i − Z ˉ ) 2 \bar{Z}=\bar{X}-\bar{Y},S_Z^*=\sqrt{\frac{1}{n-1}\sum_{i=1}^n (Z_i-\bar{Z})^2} WITHˉ=XˉANDˉ,SWITH=n11i=1n(ZiWITHˉ)2

σ 1 2 / σ 2 2 \sigma_1^2/\sigma_2^2 p12/σ22interval estimate of

这りJust讨论 μ 1 , μ 2 \mu_1,\mu_2 m1,m2 为未知时, σ 1 2 / σ 2 2 \sigma_1^2/\sigma_2^2 p12/σ22interval estimate.

F = σ 2 2 S 1 n 1 ∗ 2 σ 1 2 S 2 n 2 ∗ 2 ∼ F ( n 1 − 1 , n 2 − 1 ) F=\frac{\sigma_2^2 S_{1n_1}^{*2}}{\sigma_1^2 S_{2n_2}^{*2}} \sim F(n_1-1,n_2-1)
F=p12S2n22p22S1n12F(n11,n21) σ 1 2 / σ 2 2 \sigma_1^2/\sigma_2^2 p12/σ22The confidence of is 1 − α 1-\alpha 1α 的置信区间为
( S 1 n 1 ∗ 2 / S 2 n 2 ∗ 2 F α / 2 ( n 1 − 1 , n 2 − 1 ) , S 1 n 1 ∗ 2 / S 2 n 2 ∗ 2 F 1 − α / 2 ( n 1 − 1 , n 2 − 1 ) ) \left(\frac{S_{1n_1}^{*2}/S_{2n_2}^{*2}}{F_{\alpha/2}(n_1-1,n_2-1)}, \frac{S_{1n_1}^{*2}/S_{2n_2}^{*2}}{F_{1-\alpha/2}(n_1-1,n_2-1)}\right) (Fα/2(n11,n21)S1n12/S2n22,F1α/2(n11,n21)S1n12/S2n22) 利用 F F F The upper quantile property of the distribution can be σ 1 2 / σ 2 2 \sigma_1^2/\sigma_2^2 p12/σ22The confidence of is 1 − α 1-\alpha 1The confidence interval of α is rewritten as
( F 1 − α / 2 ( n 2 − 1 , n 1 − 1 ) S 1 n 1 ∗ 2 S 2 n 2 ∗ 2 , F α / 2 ( n 2 − 1 , n 1 − 1 ) S 1 n 1 ∗ 2 S 2 n 2 ∗ 2 ) \left(F_{1-\alpha/2} (n_2-1,n_1-1)\frac{S_{1n_1}^{*2}}{S_{2n_2}^{*2}}, F_{\alpha/2}(n_2-1,n_1-1) \frac{S_{1n_1}^{*2}}{S_{2n_2}^{*2}}\right) (F1α/2(n21,n11)S2n22S1n12,Fα/2(n21,n11)S2n22S1n12)

references

[1] "Applied Mathematical Statistics", Shi Yu, Xi'an Jiaotong University Press.

Guess you like

Origin blog.csdn.net/myDarling_/article/details/134629074