Some conclusions on branch areas

references:

  1. [书籍] Washington L C. Introduction to cyclotomic fields[M]. Springer Science & Business Media, 1997.
  2. [Lecture notes] Milne J S. Algebraic number theory[M]. JS Milne, 2008.
  3. [讲义] Milne J S. Fields and Galois Theory (v5. 10)[J]. Amer. Math. Monthly, 2021, 128(8): 753-754.
  4. [SV11] Smart N P, Vercauteren F. Fully homomorphic SIMD operations[J]. Designs, codes and cryptography, 2014, 71: 57-81.
  5. [GHS12a] Gentry C, Halevi S, Smart N P. Fully homomorphic encryption with polylog overhead[C]//Annual International Conference on the Theory and Applications of Cryptographic Techniques. Berlin, Heidelberg: Springer Berlin Heidelberg, 2012: 465-482.
  6. [GHS12b] Gentry C, Halevi S, Smart N P. Homomorphic evaluation of the AES circuit[C]//Annual Cryptology Conference. Berlin, Heidelberg: Springer Berlin Heidelberg, 2012: 850-867.
  7. [GHS12c] Gentry C, Halevi S, Smart N P. Better bootstrapping in fully homomorphic encryption[C]//International Workshop on Public Key Cryptography. Berlin, Heidelberg: Springer Berlin Heidelberg, 2012: 1-16.
  8. [GHS12d] Gentry C, Halevi S, Peikert C, et al. Ring switching in BGV-style homomorphic encryption[C]//International Conference on Security and Cryptography for Networks. Berlin, Heidelberg: Springer Berlin Heidelberg, 2012: 19-37.
  9. [GHPS12] Gentry C, Halevi S, Peikert C, et al. Field switching in BGV-style homomorphic encryption[J]. Journal of Computer Security, 2013, 21(5): 663-684.
  10. [AP13] Alperin-Sheriff J, Peikert C. Practical bootstrap** in quasilinear time[C]//Annual Cryptology Conference. Berlin, Heidelberg: Springer Berlin Heidelberg, 2013: 1-20.
  11. Algebraic number - Encyclopedia of Mathematics
  12. Algebraic Number Theory Study Notes (1) - Algebraic Numbers and Algebraic Integers - Zhihu (zhihu.com)
  13. [Abstract Algebra] 5. Permutation groups, simple groups, solvable groups, automorphism groups, free groups - Zhihu (zhihu.com)

Disclaimer: I have only learned the most elementary group ring field, and am not familiar with concepts such as fractional ideals, Galois expansions, and algebraic integer rings. This is just because when reading FHE papers, you will always encounter various concepts about divided rings, bits and pieces of knowledge picked out from books, papers, and web pages. (There should be a lot of mistakes.) Mathematics experts are welcome to give their advice, and other readers should also pay attention to identification.

Algebraic Integer

Algebraic structure:

  • Rational number field Q \mathbb Q Q, algebra closure Q a c \mathbb Q^{ac} Qac, multiple range C \mathbb C C,满足关系 Q ⊆ Q a c ⊆ C \mathbb Q \subseteq \mathbb Q^{ac} \subseteq \mathbb C QQacC
  • Integer ring Z ⊆ Q \mathbb Z \subseteq \mathbb Q WITHQ, algebraic integer ring O C ⊆ Q a c \mathcal O_\mathbb C \subseteq \mathbb Q^{ac} OCQac

代数数(algebraic number):元素 α ∈ C \alpha \in \mathbb C aC, there is a rational polynomial f ( x ) ∈ Q [ x ] f(x) \in \mathbb Q[x] < /span>f(x)Q[x],使得 f ( α ) = 0 f(\alpha)=0 f(α)=0, the set of all algebraic numbers is Q a c \mathbb Q^{ac} Qac,Construction area

Minimal polynomialminimal polynomial): algebraic number α ∈ Q a c \alpha \in \mathbb Q^{ac} aQac, there is a unique leading irreducible polynomial ϕ ( x ) ∈ Q [ x ] \phi(x)\in \mathbb Q[x] ϕ(x)Q[x],满足 ϕ ( α ) = 0 \phi(\alpha)=0 ϕ(α)=0,使用 n = deg ⁡ ϕ n=\deg\phi n=ofgϕ nomological algebraic number α \alpha α 的度数(degree

an integer(algebraic integer):an integer α ∈ Q a c \alpha \in \ mathbb Q^{ac}aQac, its minimal polynomial has integral coefficients ϕ ( x ) ∈ Z [ x ] \phi(x) \in \mathbb Z[x] ϕ(x)Z[x], possessive algebra integer Set is O C \mathcal O_\mathbb C OC, forming the whole ring

共轭(conjugates):代数数 α ∈ Q a c \alpha \in \mathbb Q^{ac} aQac 目极小多项表 ϕ ( x ) \phi(x) ϕ(x),它的所有根 α 1 , ⋯   , α n \alpha_1,\cdots,\alpha_n a1,,an are different from each other and are all algebraic numbers. Algebraic integers α ∈ O C \alpha \in \mathcal O_\mathbb C aOCThe conjugates of are all algebraic integers.

Divisibility (divisibility): I say algebraic integer β \beta β Algebraic integer α ≠ 0 \alpha \neq 0 a=0 Integer, existing algebraic integer γ \gamma γ, 得 β = γ α \beta=\gamma\alpha b=γα,记文 α ∣ β \alpha|\beta αβ

单位(algebraic unit):Our translation algebraic integer e e e This is the first place, the result 1 / e 1/e 1/e Also is an algebraic integer. One place is reversible (there is O C \mathcal O_\mathbb C OCsuperior)

associated (associated): two algebraic integers α , β \alpha,\beta < /span>α,β, existential position u ∈ O C u \in \mathcal O_\mathbb C inOC,Use a = u b a=ub a=ub

扩域 K / Q K/\mathbb Q K/Q, my story α \alpha α Correct K K Algebraic number on K if exists f ( x ) ∈ K [ x ] f(x) \in K[x] f(x)K[x] 使得 f ( α ) = 0 f(\alpha)=0 f(α)=0,similar definition K K Concepts such as algebraic integers, minimal polynomials, conjugates on K.

Integral closure (integral closure): Containing unitary commutative ring R R R 的扩环 S S S 中, R R The integer closure of R is S S A subset of S where the elements s ∈ S s \in S sS R R R is an algebraic integer, that is, there is a leading polynomial f ( x ) ∈ R [ x ] f(x) \in R [x] f(x)R[x] Use f ( s ) = 0 f(s)=0 f(s)=0

Given a set of elements α 1 , ⋯ , α n ∈ O K \alpha_1,\cdots,\alpha_n \in \mathcal O_K a1,,anOK,and instead ⟨ α , β ⟩ = T r K / Q ( α β ) \rangle\alpha,\beta\rangle =Tr_{K/\mathbb Q}(\alpha\beta)α,β=TrK/Q(αβ),square G = [ T r K / Q ( α 1 α 1 ) ⋯ T r K / Q ( α 1 α n ) ⋮ ⋱ ⋮ T r K / Q ( α n α 1 ) ⋯ T r K / Q ( α n α n ) ] G=\begin{bmatrix} Tr_{K/\mathbb Q}(\alpha_1 \alpha_1) & \cdots & Tr_{K/\mathbb Q}(\alpha_1\alpha_n)\\ \vdots & \ddots & \vdots\\ Tr_{K/\mathbb Q}(\alpha_n\alpha_1) & \cdots & Tr_{K/\mathbb Q}(\alpha_n\alpha_n)\\ \end{bmatrix} IndividualGram Difference
G= TrK/Q(α1a1)TrK/Q(αna1)TrK/Q(α1an)TrK/Q(αnan)
The discriminant (discriminant) is defined as d K / Q ( α 1 , ⋯ , α n ) = det ⁡ ( G ) d_{K/\mathbb Q}(\alpha_1,\cdots,\alpha_n)=\det(G) dK/Q(α1,,an)=det(G),作用是 d K / Q ( α 1 , ⋯   , α n ) ≠ 0    ⟺    { α 1 , ⋯   , α n } d_{K/\mathbb Q}(\alpha_1,\cdots,\alpha_n) \neq 0 \iff \{\alpha_1,\cdots,\alpha_n\} dK/Q(α1,,an)=0{ α1,,an} Q \mathbb Q Q is linearly independent.

If the number of expansions [ K : Q ] = n [K:\mathbb Q]=n [K:Q]=n,Nana integer O K \mathcal O_K OK Chichitei n n The free Abelian group of n: there is a set of basis α 1 , ⋯ , α n ∈ O K \alpha_1,\cdots,\ alpha_n \in \mathcal O_K a1,,anOK,one O K = α 1 Z ⊕ ⋯ α n Z \mathcal O_K = \alpha_1\mathbb Z \oplus \cdots \alpha_n\mathbb Z OK=a1WITHanZ, we call it the integral base (Integeral base). The integral basis must exist, but it is not necessarily unique, but their discriminants are the same.

Cyclotomic Fields and Rings

ζ m \zeta_m gm is an abstract m m m element (not necessarily C , G F ( p d ) \mathbb C, GF(p^d) C,GF(pd) (actual elements in η m = exp ⁡ ( 2 π − 1 / m ) ∈ C \eta_m=\exp(2\pi \sqrt{-1}/m) \in \mathbb C them=exp(2π1 /m)C is the primitive complex unit root,

  • 分园多项式 Φ m ( x ) = ∏ i ∈ Z m ∗ ( x − η m i ) ∈ Z [ x ] \Phi_m(x) = \prod_{i \in \mathbb Z_m^*}(x-\eta_m^i) \in \mathbb Z[x] Phim(x)=iZm(xthemi)Z[x],是 Q \mathbb Q Irreducible polynomial on Q, degree n = deg ⁡ Φ m = ϕ ( m ) n=\deg \Phi_m=\phi (m) n=ofgPhim=ϕ(m)

  • < a i = 0 > invariance K = Q ( ζ m ) ≅ Q [ x ] / ( Φ m ( x ) ) K=\mathbb Q(\zeta_m) \cong\ mathbb Q[x]/(\Phi_m(x)) K=Q(ζm)Q[x]/(Φm(x)),The algebraic number of the elements

  • 分园公司环 R = Z [ ζ m ] ≅ Z [ x ] / ( Φ m ( x ) ) R=\mathbb Z[\zeta_m] \cong \ mathbb Z[x]/(\Phi_m(x))R=Z[ζm]Z[x]/(Φm(x)), an algebraic integer is an algebraic integer

Domain expansion K / Q K/\mathbb Q K/Q This is one Galois 扩张 ∣ A u t ( K ) ∣ = [ K : Q ] = n |Aut(K)|=[K:\mathbb Q]=n < /span>, full Aut(K)=[K:Q]=n 以及 G a l ( K / Q ) = A u t ( K ) Gal(K/\mathbb Q)=Aut(K) Gal(K/Q)=Aut(K ), possessive n n n Q \mathbb Q Q-自同构形如
τ i : ζ m ∈ K ↦ ζ m i ∈ K ,    ∀ i ∈ Z m ∗ \tau_i: \zeta_m \in K \mapsto \zeta_m^i \in K,\,\, \forall i \in \mathbb Z_m^* ti:gmKgmiK,iWITHm
迹(field trace)是 Q \mathbb Q Q-线性映射,
T r K / Q : a ∈ K ↦ ∑ i ∈ Z m ∗ τ i ( a ) ∈ Q Tr_{K/\mathbb Q}: a \in K \mapsto \sum_{i \in \mathbb Z_m^*} \tau_i(a) \in \mathbb Q TrK/Q:aKiZmti(a)Q
All linear mappings L r : K → Q L_r:K \to \mathbb Q Lr:KQ,都可以表示为 L r ( a ) : = T r K / Q ( r ⋅ a ) , ∃ r ∈ K L_r(a) := Tr_{K/\mathbb Q}(r \cdot a), \exist r \in K Lr(a):=TrK/Q(ra),rK

K K K Work C \mathbb C C target child area, existence n n n Q \mathbb Q Q-内射环同态,称为嵌入(embedding),
σ i : ζ m ∈ K ↦ η m i ∈ C ,    ∀ i ∈ Z m ∗ \sigma_i: \zeta_m \in K \mapsto \eta_m^i \in \mathbb C,\,\, \forall i \in \mathbb Z_m^* pi:gmKthemiC,iWITHm
Another expression of trace:
T r K / Q : a ∈ K ↦ ∑ i ∈ Z m ∗ σ i ( a ) ∈ Q Tr_{K/\ mathbb Q}: a \in K \mapsto \sum_{i \in \mathbb Z_m^*} \sigma_i(a) \in \mathbb Q TrK/Q:aKiZmpi(a)Q
典范嵌入(canonical embedding)定义为
σ : a ∈ K ↦ ( σ i ( a ) ) i ∈ Z m ∗ ∈ C n \sigma: a \in K \mapsto (\sigma_i(a))_{i \in \mathbb Z_m^*} \in \mathbb C^n p:aK(σi(a))iZmCn

My defined area K K The canonical embedding norm of K (Canonical Embedding Norm) is divided into l 2 l_2 l2-范数、 l ∞ l_\infty l-范数,令 ∥ ⋅ ∥ \|\cdot\| C \mathbb C C 的模长,
∥ a ∥ 2 c a n : = ∥ σ ( a ) ∥ 2 = ∑ i ∥ σ i ( a ) ∥ 2 ∥ a ∥ ∞ c a n : = ∥ σ ( a ) ∥ ∞ = max ⁡ i ∥ σ i ( a ) ∥ \begin{aligned} \|a\|_2^{can} &:= \|\sigma(a)\|_2 = \sqrt{\sum_i\|\sigma_i(a)\|^2}\\ \|a\|_\infty^{can} &:= \|\sigma(a)\|_\infty = \max_i{\|\sigma_i(a)\|}\\ \end{aligned} a2canacan:=σ(a)2=iσi(a)2 :=σ(a)=imaxσi(a)
They satisfy good properties. Let ∥ ⋅ ∥ l \|\cdot\|_l l is a linear space K / Q K/\mathbb Q K/Q 向量的 l l l-范数,NA么

  • ∥ a ⋅ b ∥ 2 c a n ≤ ∥ a ∥ ∞ c a n ⋅ ∥ b ∥ 2 c a n , ∀ a , b ∈ K \|a\cdot b\|_2^{can} \le \|a\|_\infty^{can} \cdot \|b\|_2^{can}, \forall a,b \in K ab2canacanb2can,a,bK
  • ∥ a ⋅ b ∥ ∞ c a n ≤ ∥ a ∥ ∞ c a n ⋅ ∥ b ∥ ∞ c a n , ∀ a , b ∈ K \|a\cdot b\|_\infty^{can}\le\|a\|_\infty^{can} \cdot \|b\|_\infty^{can}, \forall a,b \in K abcanacanbcan,a,bK
  • ∥ a ∥ ∞ c a n ≤ ∥ a ∥ 1 , ∀ a ∈ K \|a\|_\infty^{can} \le \|a\|_1,\forall a \in K acana1,aK
  • ∥ a ∥ ∞ ≤ c m ⋅ ∥ a ∥ ∞ c a n , ∀ a ∈ K , ∃ c m = ∥ C R T − 1 ∥ ∞ \|a\|_\infty \le c_m \cdot\|a\|_\infty^{can},\forall a \in K, \exist c_m=\|CRT^{-1}\|_\infty acmacan,aK,cm=CRT1

Tower of Cyclotomics

Thoughts m ′ ∣ m m'|m mm,简记 K = Q ( ζ m ) , R = Z [ ζ m ] K=\mathbb Q(\zeta_m),R=\mathbb Z[\zeta_m] K=Q(ζm),R=Z[ζm] 以及 K ′ = Q ( ζ m ′ ) , R ′ = Z [ ζ m ′ ] K'=\mathbb Q(\zeta_{m'}),R'=\mathbb Z[\zeta_{m'}] K=Q(ζm),R=Z[ζm]

  1. Galois 扩张 K / Q K/\mathbb Q K/Q,扩张order为 n = ϕ ( m ) n=\phi(m) n=ϕ(m)
    • n n n self-same τ i : K → K \tau_i:K \to K ti:KK,Galois 群 G a l ( K / Q ) ≅ Z m ∗ Gal(K/\mathbb Q) \cong \mathbb Z_m^* Gal(K/Q)WITHm
    • n n n 个嵌入 σ i : K → C \sigma_i:K \to \mathbb C pi:KC,典范嵌入 σ : K → C n \sigma:K \to \mathbb C^n p:KCn
  2. Galois 扩张 K ′ / Q K'/\mathbb Q K/Q,扩张order为 n ′ = ϕ ( m ′ ) n'=\phi(m') n=ϕ(m)
    • n ′ n' n τ i ′ ′ : K ′ → K ′ \tau_{i'}' :K' \to K' ti:KK,Galois 群 G a l ( K ′ / Q ) ≅ Z m ′ ∗ Gal(K'/\mathbb Q) \cong \mathbb Z_{m'}^* Gal(K/Q)WITHm
    • n ′ n' n 个嵌入 σ i ′ ′ : K ′ → C \sigma_{i'}':K' \to \mathbb C pi:KC,典范嵌入 σ ′ : K ′ → C n ′ \sigma':K' \to \mathbb C^{n'} p:KCn

假设 t = m / m ′ t=m/m' t=m/m,then n / n ′ = ϕ ( t m ′ ) / ϕ ( m ′ ) = ϕ ( t ) n/n& #39;=\phi(tm')/\phi(m')=\phi(t) n/n=ϕ(tm)/ϕ(m)=ϕ(t),从而:

  • K / K ′ K/K' K/K ϕ ( t ) \phi(t) ϕ(t) Next area, K ′ K' K 视为 K = K ′ ( ζ m ) K = K'(\zeta_m) K=K(ζm) Target area, area insertion ζ m ′ ↦ ζ m t \zeta_{m'} \mapsto \zeta_m^ {t} gmgmt
  • R / R ′ R/R' R/R ϕ ( t ) \phi(t) ϕ(t) Next environment R ′ R' R 视为 R = R ′ [ ζ m ] R = R'[\zeta_m] R=R[ζm] 目子环、环匌入为 ζ m ′ ↦ ζ m t \zeta_{m'} \mapsto \zeta_m^ {t} gmgmt

Further, K / K ′ K/K' K/K is also the Galois expansion, which forms a tower (tower),
K ∣ K ′ ∣ Q \begin{array}{c} K\\ |\\ K'\\ |\\ \mathbb Q \end{array} KKQ
它拥有 ϕ ( t ) \phi(t) ϕ(t) K ′ K' K-automorphism, just those i = 1 ( m o d m ′ ) i=1 \pmod{m'} i=1(modm) Q \mathbb Q Q-自同构,可验证
τ i ( ζ m ′ ) = τ i ( ζ m t ) = ζ m t ( 1 + m ′ Z ) = ζ m t = ζ m ′ \tau_i(\zeta_{m'}) = \tau_i(\zeta_m^t) = \zeta_m^{t(1+m'\mathbb Z)} = \zeta_m^t = \zeta_{m'} ti(ζm)=ti(ζmt)=gmt(1+mZ)=gmt=gm
this is covered ϕ ( t ) \phi(t) ϕ(t)-to- 1 1 1 Transfer projection i ∈ Z m ∗ ↦ i ( m o d m ′ ) i \in \mathbb Z_m^* \mapsto i\ pmod{m'} iWITHmi(modm) 诱导的、对应的self-construct关SYSTEMS τ i ↦ τ i ( m o d m ′ ) ′ \tau_i \mapsto \tau_{i \pmod{m'}}' titi(modm), they are in subdomain K ′ K' K complete polymerization (coincide)

intermediate trace (intermediate trace) is K ′ K' K-线性映射,
T r K / K ′ : a ∈ K ↦ ∑ i = 1 ( m o d m ′ ) τ i ( a ) ∈ K ′ Tr_{K/K'}: a \in K \mapsto \sum_{i =1\pmod{m'}} \tau_i(a) \in K' TrK/K:aKi=1(modm)ti(a)K
易知 T r K / Q = T r K ′ / Q ∘ T r K / K ′ Tr_{K/\mathbb Q} = Tr_{K'/\mathbb Q} \circ Tr_{K/K'} TrK/Q=TrK/QTrK/K, and all linear mappings L r : K → K ′ L_r:K \to K' Lr:KK 都可以表示为 L r ( a ) : = T r K / K ′ ( r ⋅ a ) , ∃ r ∈ K L_r(a) := Tr_{K/K'}(r \cdot a), \exist r \in K Lr(a):=TrK/K(ra),rK

Similarly, by ϕ ( t ) \phi(t) ϕ(t)-to- 1 1 1 Transfer projection i ∈ Z m ∗ ↦ i ( m o d m ′ ) i \in \mathbb Z_m^* \mapsto i\ pmod{m'} iWITHmi(modm) 诱导的、对应的Area Intrusion关SYSTEMS σ i ↦ σ i ( m o d m ′ ) ′ \sigma_i \mapsto \sigma_{i \pmod{m'}}' pipi(modm), they are also in subdomain K ′ K' KCompletely overlap on ′. And it can be derived: for any a ∈ K a \in K aK i ′ ∈ Z m ′ ∗ i' \in \mathbb Z_{m'}^* iWITHm
σ i ′ ′ ∘ T r K / K ′ : a ∈ K ↦ ∑ i = i ′ ( m o d m ′ ) σ i ( a ) ∈ K ′ \sigma_{i'}'\circ Tr_{K/K'}: a\in K \mapsto \sum_{i=i' \pmod{m'}} \sigma_i(a) \in K' piTrK/K:aKi=i(modm)pi(a)K
我们把 σ , σ ′ \sigma,\sigma' σ,p is the integral of the infinitesimal,
σ ′ ( T r K / K ′ ( a ) ) = P ⋅ σ ( a ) \sigma(Tr_{K/K'}(a)) = P \cdot \sigma(a)p(TrK/K(a))=Pσ(a)
对应的矩阵 P ∈ { 0 , 1 } n ′ × n P \in \{0,1\}^{n' \times n} P{ 0,1}n×n,系数为 P i ′ , i = 1    ⟺    i = i ′ ( m o d m ′ ) P_{i',i}=1 \iff i=i' \pmod{m'} Pi,i=1i=i(modm)

Yu P P The row vectors of P are orthogonal, and l 2 l_2 l2-norm is exactly n / n ′ \sqrt{n/n'} n/n ,可推出
∥ T r K / K ′ ( a ) ∥ 2 c a n = ∥ P ⋅ σ ( a ) ∥ 2 ≤ ∥ a ∥ 2 c a n ⋅ n / n ′ \|Tr_{K/K'}(a)\|_2^{can} = \|P \cdot \sigma(a)\|_2 \le \|a\|_2^{can} \cdot \sqrt{n/n'} TrK/K(a)2can=Pσ(a)2a2cann/n
i.e. linear mapping T r K / K ′ Tr_{K/K'} TrK/K generalshort element a ∈ K a \in K aK, mapped to anothershort element T r K / K ′ ( a ) ∈ K ′ Tr_{K/K'}(a) \in K' TrK/K(a)K, the norm difference between the two is only a small factor.

Prime Split

order A A A is one piece of Dedekind domain (Dedekind domain), K K K is its fractional field (quotient field), finite divisible expansion E / K E/K E/K,令 B B B Correct A A A E E E integral closure (integral closure), display B=A[α],αE,在令 f ( x ) ∈ K [ x ] f(x) \in K[x] f(x)K[x] is small Multi-piece style.

  • p ⊆ A \mathscr p \subseteq A pA 是素理想,令 f ˉ ( x ) : = f ( x ) ( m o d p ) \bar f(x):=f(x)\pmod{\mathscr p} fˉ(x):=f(x)(modp),分解为
    f ˉ ( x ) = P ˉ 1 ( x ) e 2 ⋅ P ˉ 1 ( x ) e 2 ⋯ P ˉ g ( x ) e g \bar f(x) = \bar P_1(x)^{e_2}\cdot \bar P_1(x)^{e_2}\cdots \bar P_g(x)^{e_g} fˉ(x)=Pˉ1(x)It is2Pˉ1(x)It is2Pˉg(x)It isg
    其中 P ˉ i ( x ) ∈ ( A / p ) [ x ] \bar P_i(x) \in (A/\mathscr p)[x] Pˉi(x)(A/p) [x] This is a unique, unequivocal, multi-format

  • My general P ˉ i ( x ) \bar P_i(x) Pˉi(x) 提升到 P i ( x ) ∈ A [ x ] P_i(x) \in A[x] Pi(x)A[x],定义理想
    p i = ( p , P i ( α ) ) \mathscr p_i = (\mathscr p, P_i(\alpha)) pi=(p,Pi(α))
    那么 p i \mathscr p_i pi Name B B B 中的 lying over p \mathscr p p prime ideal, index e i ≥ 1 e_i \ge 1 It isi1 is called the divergence index (ramification index), and has
    p B = p 1 e 1 p 2 e 2 ⋯ p g e g \mathscr p B = \mathscr p_1^{e_1}\mathscr p_2^{e_2}\cdots \mathscr p_g^{e_g} pB=p1It is1p2It is2pgIt isg
    This is the ideal p \mathscr p p present B B B Intermediate decomposition. Results ∃ e i ≥ 2 \exists e_i \ge 2 ei2,我们称 p \mathscr p p E / K E/K E/K中文歧(ramifie)

For cyclothematic domain K = Q ( ζ m ) K=\mathbb Q(\zeta_m) K=Q(ζm),园环 R = Z [ ζ m ] R=\mathbb Z[\zeta_m] R=Z[ζm],素数 p ∈ Z p \in \mathbb Z pZ 对应的 p R pR pR Possible R R R​ is decomposed into the product of prime ideal powers:

  1. 计算 m = m ˉ ⋅ p k m = \bar m\cdot p^k m=mˉpk, use p ∤ m ˉ p \nmid \bar m pmˉ

  2. 惯性度(inertial degree): d = o r d ( p ∈ Z m ˉ ∗ ) d=ord(p \in \mathbb Z_{\bar m}^*) d=ord(pWITHmˉ)

  3. 分布天天(ramification index): e = ϕ ( m ) / ϕ ( m ˉ ) = ϕ ( p k ) e=\phi(m)/\phi(\bar m)=\phi(p^k) It is=ϕ(m)/ϕ(mˉ)=ϕ(pk),因为 Galois 扩张 e 1 = ⋯ = e g = e e_1=\cdots =e_g=e It is1==It isg=It is

  4. Cyclic group ( p ) = { 1 , p , p 2 , ⋯ , p d − 1 } (p)=\{1,p,p^2,\cdots ,p^{d-1}\} (p)={ 1,p,p2,,pd1},商群 G = Z m ˉ ∗ / ( p ) G=\mathbb Z_{\bar m}^*/(p) G=WITHmˉ/(p) target f = ϕ ( m ˉ ) / d f=\phi(\bar m)/d f=ϕ(mˉ)/d,陪集 i ( p ) i(p) i(p) 的代表 i ∈ G i \in G iG

  5. Ideal p R pR pR can be decomposed as follows,
    p R = ∏ i ∈ G p i e pR = \prod_{i \in G} \mathscr p_i^e pR=iGpie

  6. The garden dividing polynomial is in ( m o d p ) \pmod{p} (modp) 下做分解 Φ m ˉ ( x ) = ∏ i ∈ G F i ( x ) ( m o d p ) \Phi_{\bar m}(x)=\prod_{i \in G} F_i(x) \pmod{p} Phimˉ(x)=iGFi(x)(modp),使用 deg ⁡ F i = d \deg F_i=d ofgFi=d, then each prime ideal shape is as follows
    p i = ( p , F i ( ζ m ) ) \mathscr p_i = (p, F_i(\zeta_m)) pi=(p,Fi(ζm))
    They are different from each other, and their norms are all ∣ R / p i ∣ = p d |R/\mathscr p_i|=p ^d R/pi=pd

Because the prime ideals in the main ideal integral ring are maximum ideals, therefore R / p i ≅ G F ( p d ) R/\mathscr p_i \cong GF(p^d ) R/piGF(pd) are all the same finite field. Let w m ˉ ∈ G F ( p d ) w_{\bar m} \in GF(p^d) InmˉGF(pd) is m ˉ \bar m mAny element of ˉ (since m ˉ ∣ p d − 1 \bar m|p^d-1 mˉpd1, it must exist), we define ring homomorphism
h i : ζ m ∈ R ↦ w m ˉ i ∈ G F ( p d ) h_i: \zeta_m \in R \mapsto w_{\bar m}^i \in GF(p^d) hi:gmRInmˉiGF(pd)
那么 p i \mathscr p_i pi します ker ⁡ h i \ker h_i becausehi, which induces domain isomorphism h i : R / p i → G F ( p d ) h_i: R/\mathscr p_i \to GF(p^d) hi:R/piGF(pd)

For special cases:

  • value p p p,下园环 Z [ ζ p ] \mathbb Z[\zeta_p] Z[ζp] Intermediate ideal ( 1 − ζ p ) (1-\zeta_p) (1gp) is prime, and ( 1 − ζ p ) p − 1 = ( p ) (1-\zeta_p)^{ p-1} = (p) (1gp)p1=(p),Inko p p p Current area Q ( ζ p ) \mathbb Q(\zeta_p) Q(ζp) completely ramified (totally ramified)
  • value p p p,它在 Q ( ζ m ) \mathbb Q(\zeta_m) Q(ζmpm
  • 如果 p ∤ m p \nmid m pm (undivided), at this time e = 1 e=1 It is=1,乘法阶 d = o r d ( p ∈ Z m ∗ ) d=ord(p \in \mathbb Z_m^*) d=ord(pWITHm),Zubunen area Q ( ζ m ) \mathbb Q(\zeta_m) Q(ζm) medium prime p p p splitting f = ϕ ( m ) / d f=\phi(m)/d f=ϕ(m)/ d The ideal cross.
  • Further, if p = 1 ( m o d m ) p=1\pmod{m} p=1(modm),此时 d = 1 d=1 d=1,square p p p 完全分裂(splits completely),

p R = ∏ i ∈ Z m ∗ p i pR=\prod_{i \in \mathbb Z_m^*} \mathscr p_i pR=iZmpi

Power of Prime

ζ m \zeta_m gm is m m m Secondary primitive unit root, divided garden number field K = Q [ ζ m ] K=\mathbb Q[\zeta_m] K=Q[ζm] Rationalization R = O K = Z [ ζ m ] ≅ Z [ x ] / ( Φ m ( x ) ) R =\mathcal O_K = \mathbb Z[\zeta_m] \cong \mathbb Z[x]/(\Phi_m(x)) R=OK=Z[ζm]Z[x]/(Φm(x)), the same reflection is ζ m ↦ x \zeta_m \mapsto x gmx,它相对于 Z \mathbb Z Z 的扩张order n = ϕ ( m ) n = \phi(m) n=ϕ(m)

对于Prime number p ∈ Z p \in \mathbb Z pZ, ideal p R pR pR can be decomposed into products of prime ideal powers: Calculation m = m ˉ ⋅ p k , p ∤ m ˉ m = \bar m\cdot p^k, p \nmid \bar m m=mˉpk,pmˉ,素数 p ( m o d m ˉ ) p \pmod{\bar m} p(modmˉ) 的乘法阶 d = o r d ( p ∈ Z m ˉ ∗ ) d= ord(p \in \mathbb Z_{\bar m}^*) d=ord(pWITHmˉ),商群 G = Z m ˉ ∗ / ( p ) G=\mathbb Z_{\bar m}^*/(p) G=WITHmˉ/(p) target f = ϕ ( m ˉ ) / d f=\phi(\bar m)/d f=ϕ(mˉ)/d, index e = ϕ ( m ) / ϕ ( m ˉ ) = ϕ ( p k ) e=\phi(m)/\phi(\bar m)=\phi(p^k) It is=ϕ(m)/ϕ(mˉ)=ϕ(pk)
p R = ∏ i ∈ G p i e pR = \prod_{i \in G} \mathscr p_i^e pR=iGpie
Prime factorization of garden-partitioning polynomials Φ m ˉ ( x ) = ∏ i = 1 l F i ( x ) ( m o d p ) \Phi_{\bar m}(x) =\prod_{i=1}^l F_i(x) \pmod{p} Phimˉ(x)=i=1lFi(x)(modp)
p i = p R + F i ( ζ m ) R = ( p , F i ( ζ m ) ) \mathscr p_i = pR + F_i(\zeta_m)R = (p, F_i(\zeta_m)) pi=pR+Fi(ζm)R=(p,Fi(ζm))
Now generalize toprime powers q = p r ∈ Z q=p^r \ in \mathbb Z q=prZ,那么有
q R = ∏ i = 1 l p i r e qR = \prod_{i=1}^l \mathscr p_i^{re} qR=i=1lpire
According to the Chinese Remainder Theorem,
R / q R ≅ R / p 1 r e × ⋯ × R / p l r e R/qR \cong R/\mathscr p_1^{re} \ times \cdots \times R/\mathscr p_l^{re} R/qRR/p1re××R/plre
Each small business ring R / p i r e R/\mathscr p_i^{re} R/pire (not a domain) is embedded in the entire ring Z q \mathbb Z_q WITHq (also not a domain) as a subring. The isomorphic mapping is:
a ( m o d q ) ↦ ( a ( m o d p 1 r e ) , ⋯ , a ( m o d p l r e ) ) a \pmod{q} \mapsto (a \pmod{\mathscr p_1 ^{re}},\cdots,a \pmod{\mathscr p_l^{re}}) a(modq)(a(modp1re),,a(modplre))
预计mod- q q q CRT set C = { c i } ⊆ R C=\{c_i\} \subseteq R C={ ci}R,满足
c i ≡ 1 ( m o d p j r e ) ,    j = i c i ≡ 0 ( m o d p j r e ) ,    ∀ j ≠ i \begin{aligned} c_i &\equiv 1 \pmod{\mathscr p_j^{re}},\,\, j=i\\ c_i &\equiv 0 \pmod{\mathscr p_j^{re}},\,\, \forall j \neq i\\ \end{aligned} cici1(modpjre),j=i0(modpjre),j=i
根据 CRT,逆映射就是
( a 1 + p 1 r e , ⋯   , a l + p l r e ) ↦ ( ∑ i = 1 l a i ⋅ c i ) + q R (a_1+\mathscr p_1^{re},\cdots,a_l+\mathscr p_l^{re}) \mapsto \left(\sum_{i=1}^l a_i \cdot c_i\right) + qR (a1+p1re,,al+plre)(i=1laici)+qR

Splitting in Cyclotomic Towers

对于 m ′ ∣ m m'|m mm,Branch Garden Entry Tower R / R ′ / Z R/R'/\mathbb Z R/R/Z,素数 p p p的电影,

  • R = Z [ ζ m ] R=\mathbb Z[\zeta_m] R=Z[ζm] 上:计算 m = m ˉ ⋅ p k , p ∤ m ˉ m = \bar m\cdot p^k, p \nmid \bar m m=mˉpk,pmˉ, invariance d = order ( p ∈ Z m ˉ ∗ ) d=order(p \in \mathbb Z_{\ bar m}^*) d=ord(pWITHmˉ),分见数数 e = ϕ ( m ) / ϕ ( m ˉ ) = ϕ ( p k ) e=\phi(m )/\phi(\bar m)=\phi(p^k) It is=ϕ(m)/ϕ(mˉ)=ϕ(pk),商群 G = Z m ˉ ∗ / ( p ) G=\mathbb Z_{\bar m}^*/(p) G=WITHmˉ/(p) target f = ϕ ( m ˉ ) / d f=\phi(\bar m)/d f=ϕ(mˉ)/d
    p R = ∏ i ∈ G p i e pR = \prod_{i \in G} \mathscr p_i^e pR=iGpie

  • R ′ = Z [ ζ m ′ ] R'=\mathbb Z[\zeta_{m'}] R=Z[ζm] 上:计算 m ′ = m ˉ ′ ⋅ p k ′ , p ∤ m ˉ ′ m' = \bar m'\cdot p^{k'}, p \nmid \bar m' m=mˉpk,pmˉ, inequality d ′ = order ( p ∈ Z m ˉ ′ ∗ ) d'=order(p \in \mathbb Z_{\bar m'}^*) d=ord(pWITHmˉ),分布数数 e ′ = ϕ ( m ′ ) / ϕ ( m ˉ ′ ) = ϕ ( p k ′ ) e 39;=\phi(m')/\phi(\bar m')=\phi(p^{k'}) It is=ϕ(m)/ϕ(mˉ)=ϕ(pk),商群 G ′ = Z m ˉ ′ ∗ / ( p ) G'=\mathbb Z_{\bar m'}^*/(p) G=WITHmˉ/(p) target f ′ = ϕ ( m ˉ ′ ) / d ′ f'=\phi(\bar m')/d' f=ϕ(mˉ)/d
    p R ′ = ∏ i ∈ G ′ ( p i ′ ′ ) e ′ pR' = \prod_{i \in G'} \mathscr (p_{i'}')^{e'} pR=iG(pi)It is

g : i ∈ G ↦ i ′ ( m o d m ˉ ′ ) ∈ G ′ g: i \in G \mapsto i' \pmod{\bar m'} \in G' g:iGi(modmˉ)G This is one f / f ′ f/f' f/f-to- 1 1 1 的自然群同态(natural homomorphism)。素数 p ∈ Z p \in \mathbb Z pZ in R ′ R' R is decomposed into a prime ideal p i ′ ′ ⊆ R ′ \mathscr p_{i'}' \subseteq R' piRThe product of ′, then each p i ′ ′ \mathscr p_{i'}' pi 在扩环 R R R continues to decompose into prime ideal p i ⊆ R \mathscr p_{i} \subseteq R piR 的乘积,
p i ′ ′ R = ∏ i ∈ g − 1 ( i ′ ) p i e / e ′ = ∏ i = i ′ ( m o d m ˉ ) p i e / e ′ \mathscr p_{i'}'R = \prod_{i\in g^{-1}(i')} \mathscr p_{i}^{e/e'} = \prod_{i=i'\pmod{\bar m}} \mathscr p_{i}^{e/e'} piR=ig1(i)pie/e=i=i(modmˉ)pie/e
That is to say, every prime ideal p i ′ ′ ⊆ R ′ \mathscr p_{i'}' \subseteq R' piR are all decomposed into f / f ′ f/f' f/f Discrete R R R is the neutral prime ideal, which is based on g : G → G ′ g:G \to G' g:GG 对那些 lying oer p p p 的素理想 p i ⊆ R \mathscr p_i \subseteq R piR partitioned.

给站环 R ′ R' R 目一组 mod- p p p CRT set C ′ = { c i ′ ′ } ⊆ R ′ , ∣ C ′ ∣ = f ′ C'=\{c_{i'}'\} \subseteq R',|C'|=f' C={ ci}R,C=f, we choose the set S = { s j } ⊆ R , ∣ S ∣ = f / f ′ S=\{s_{ j}\} \subseteq R,|S|=f/f' S={ sj}R,S=f/f,满足
s j ≡ 1 ( m o d p i e ) ,    i = j ⋅ m ˉ ′ + i ′ ∈ G , ∀ i ′ ∈ G ′ s j ≡ 0 ( m o d p i e ) ,    o t h e r w i s e \begin{aligned} s_{j} &\equiv 1 \pmod{\mathscr p_{i}^{e}},\,\, i=j\cdot\bar m'+i'\in G,\forall i'\in G'\\ s_{j} &\equiv 0 \pmod{\mathscr p_{i}^{e}},\,\, otherwise \end{aligned} sjsj1(modpie),i=jmˉ+iG,iG0(modpie),otherw ise
那么 Kronecker 积 C = S ⊗ C ′ ⊆ R C=S \otimes C' \subseteq R C=SCR 下扩环 R R R 目一组 mod- p p p CRT set。考虑 cyclotomic tower, R / R ′ / ⋯ / Z R/R'/\cdots/\mathbb Z R/R//Z, then the mod- q q q CRT sets form a multiplicative structure. Easy to generalize to q = p r q=p^r q=pr is the case of prime powers.

Guess you like

Origin blog.csdn.net/weixin_44885334/article/details/134193589