EM@Coordinates@Function@Symmetry and folding transformation of images

abstract

  • Coordinates@Function@Symmetry and folding transformation of images

flip transformation

About axis folding

  • Here we transform the image indirectly by studying the points on the image. Let the equation of the image be y = f ( x ) y=f(x)y=f(x), f ( x ) f(x) The domain of f ( x ) is D f D_fDf
f ( − x ) , f ( x ) f(-x),f(x)f(x),f(x)
  • Function f ( − x ) f(-x)f ( x ) can be viewed as the functionu = − xu=-xu=x y = f ( u ) y=f(u) y=Function composed of f ( u )
    • x ∈ D u = R x\in{D_u}=\mathbb{R} xDu=R
  • Let the function f ( x ) f(x)The domain of f ( x ) is D f {D_f}Df, for g ( x ) = f ( − x ) g(x)=f(-x)g(x)=f(x), − x ∈ D f -x\in{D_f} xDf,即 x ∈ − D f x\in{-D_f} xDfOr as D g = − D f D_g=-D_fDg=Df(representing f, gf,gf,The domain of g is symmetric about the origin)
  • a ∈ D f a\in{D_f} aDf, ex = ax=ax=At a , we can take the functionf (x) f(x)f ( x ) pointA ( a , f ( a ) ) A(a,f(a))A(a,f(a));
  • − a ∈ D g -a\in{D_g} aDg, g ( x ) g(x) There must be a pointB (− a , f ( a ) ) B(-a,f(a)) on g ( x )B(a,f(a));
  • Obviously A, BA,BA,BAbout yy_y- axis symmetry, for allxxPoint corresponding to x (x, f (x)) (x,f(x))(x,f ( x )) and( x , f ( − x ) ) (x,f(-x))(x,f ( x )) is symmetric about the y-axis
  • 从而 f ( x ) , g ( x ) f(x),g(x) f(x),g ( x ) aboutyyy- axis symmetry, that is,f (x), f (−x) f(x),f(-x)f(x),f ( x ) aboutyyy- axis symmetry
  • For example:
    • f ( x ) = sin ⁡ ( x ) f(x)=\sin(x) f(x)=sin(x),则 f ( − x ) = sin ⁡ ( − x ) = − sin ⁡ x f(-x)=\sin(-x)=-\sin{x} f(x)=sin(x)=sinx f ( x ) = sin ⁡ ( x ) f(x)=\sin(x) f(x)=sin ( x ) with respect toyyy- axis symmetry
    • For f ( x ) = cos ⁡ xf(x)=\cos{x}f(x)=cosx, f ( − x ) = cos ⁡ ( − x ) f(-x)=\cos{(-x)} f(x)=cos(x)= cos ⁡ x \cos{x} cosx, f ( − x ) , f ( x ) f(-x),f(x) f(x),f ( x ) aboutyyThe y- axis is symmetrical, that is, the functioncos ⁡ x \cos{x}cosx itself aboutyyy- axis symmetry
− f ( x ) , f ( x ) -f(x),f(x) f(x),f(x)
  • Similar to the above analysis, take a point analysis: if the function f ( x ) f (x)f ( x ) , existenceA ( a , f ( a ) ) A(a,f(a))A(a,f ( a )) , then the function− f ( x ) -f(x)There must be correspondingB ( a , − f ( a ) ) B(a,-f(a)) on − f ( x )B(a,f(a))
  • Obviously two points about xxThe x- axis is symmetrical, andxxx is any point within the domain, so− f ( x ) -f(x)f ( x ) andf ( x ) f(x)f ( x ) aboutxx_x- axis symmetry

even function@odd function

  • Even function: if function f ( x ) f(x)The domain of f ( x ) is symmetric about the origin and satisfiesf ( − x ) = f ( x ) f(-x)=f(x)f(x)=f ( x ) , then the functionf (x) f(x)f ( x ) is an even function, obviouslyf (x) f(x)f ( x ) aboutyyy- axis symmetry
    • f ( − x ) = f ( x ) f(-x)=f(x) f(x)=f ( x ) ,f ( − x ) , f ( x ) f(-x),f(x)f(x),f ( x ) aboutyyThe y- axis symmetry becomesf (x), f (x) f(x),f(x)f(x),f ( x ) aboutyyy- axis symmetry (f ( x ) f(x)f ( x ) andf ( − x ) f(-x)f ( x ) coincides), that is,f ( x ) f(x)f ( x ) aboutyyy- axis symmetry
  • Odd function: if function f ( x ) f(x)The domain of f ( x ) is symmetric about the origin and satisfiesf ( − x ) = − f ( x ) f(-x)=-f(x)f(x)=f ( x ) , then the functionf ( x ) f(x)f ( x ) is an odd function, obviouslyf (x) f(x)f ( x ) is symmetric about the coordinate origin
    • Can f ( x ) f(x)The graph of f ( x ) that is symmetric about the origin is understood to be two parts:f (x) f(x)f ( x ) aboutyyGraph with y -axis symmetry andf ( x ) f(x)f ( x ) aboutxx_If the x- axis symmetrical figures coincide, thenf ( x ) f(x)f ( x ) is an odd function that is symmetric about the origin

summary

  • The graph of f ( − x ) f(−x) f(x) is the mirror image of the graph of f ( x ) f(x) f(x) with respect to the vertical axis.
  • The graph of − f ( x ) −f(x) f(x) is the mirror image of the graph of f ( x ) f(x) f(x) with respect to the horizontal axis.
  • A function is called even if f ( − x ) = f ( x ) f(−x)=f(x) f(x)=f(x) for all x x x (For example, cos ⁡ ( x ) \cos(x) cos(x)).
  • A function is called odd if f ( − x ) = − f ( x ) f(−x)=−f(x) f(x)=f(x) for all x x x (For example, sin ⁡ ( x ) \sin(x) sin(x)).

Other flip transformations

Regarding y = ± xy=\pm xy=± x symmetrical rectangular coordinates

  • A ( x , y ) A(x,y)A(x,y )关于y = xy=xy=Symmetry point coordinates of x B ( y , x ) B(y,x)B(y,x)
  • A ( x , y ) A(x,y)A(x,y )关于y − x yxySymmetry point coordinatesB ( − y , − x ) B(-y,-x) of xB(y,x)

Symmetric about x = u Symmetric about x = uAbout x=u symmetric function

  • If f ( x ) f(x)f(x)关于 x = u x=u x=u Symmetry:

    • f ( x ) f(x) The domain of f ( x ) is about x = ux=ux=u Symmetry
  • If x 1 , x 2 x_1,x_2x1,x2关于uuu name,则x 1 + x 2 = 2 u x_1+x_2=2ux1+x2=2 u , vice versa

    • A ( a , f ( a ) ) A(a,f(a)) A(a,f ( a )) isf ( x ) f(x)point on f ( x ) , then AAA is about the axis of symmetryx = ux=ux=u 's reference pointB ( 2 u − a , f ( a ) ) B(2u-a,f(a))B ( 2 anda,f ( a )) must also be inf ( x ) f(x)f ( x ) on
    • Then f ( 2 u − a ) f(2u-a)f ( 2 ua)= f ( a ) f(a) f(a)
    • due to aaa is any point within the domain, sof ( 2 u − x ) = f ( x ) f(2u-x)=f(x)f ( 2 ux)=f(x)
    • That is, satisfy:
      • The domain is about x = ux=ux=u Symmetry
      • f ( 2u − x ) f(2u-x)f ( 2 ux)= f ( x ) f(x) f(x)
    • The function is about x = ux=ux=u symmetric function
  • For example y ( x ) = ( x − 1 ) 2 y(x)=(x-1)^2y(x)=(x1)2; y ( 2 − x ) = ( ( 2 − x ) − 1 ) 2 = ( 1 − x ) 2 = ( x − 1 ) 2 y(2-x)=((2-x)-1)^2=(1-x)^2=(x-1)^2 y(2x)=((2x)1)2=(1x)2=(x1)2 ,即y ( x ) = y ( 2 − x ) y(x)=y(2-x)y(x)=y(2x ) , the axis of symmetry isu = 1 2 ⋅ 2 = 1 u=\frac{1}{2}\cdot2=1u=212=1

    • In particular, even functions with respect to x = 0 x=0x=0 symmetry,f ( x ) = f ( − x ) f(x)=f(-x)f(x)=f ( x ) ,axis of symmetryx = u = 0 x=u=0x=u=0 ,因为x + ( − x ) = 2 u = 0 ; u = 0 x+(-x)=2u=0;u=0x+(x)=2 and=0;u=0

Regarding y = vy=vy=Two symmetric functions of v

  • f 1 ( x ) , f 2 ( x ) f_1(x),f_2(x) f1(x),f2( x ) satisfies f 1 (x) + f 2 (x) = 2 v f_1(x)+f_2(x)=2vin the domain of definitionf1(x)+f2(x)=2v,则 f 1 ( x ) , f 2 ( x ) f_1(x),f_2(x) f1(x),f2( x )关于y = vy=vy=vSymmetry _

Guess you like

Origin blog.csdn.net/xuchaoxin1375/article/details/133483517