Summary of advanced mathematics question types

1. Functions, Limits and Continuity

(1) Determination of function boundedness, monotonicity, periodicity and odd-evenness

1. Monotonicity

2. Parity

Common odd functions: sinx, tanx, arcsinx, arctanx, ln 1 − x 1 + x, ln (x + 1 + x 2), ex − 1 ex + 1, f (x) − f (−x) sinx, tanx, arcsinx, arctanx, ln\frac{1-x}{1+x}, ln(x+\sqrt{1+x^2}),\frac{e^x-1}{e^x+1} ,f(x)-f(-x)sinxtanxarcsinxarctanxln1+x1xln(x+1+x2 )ex+1ex1f(x)f(x)

Common even functions: x 2 , ∣ x ∣ , cosx , f ( x ) + f ( − x ) x^2, |x|, cosx, f(x)+f(-x)x2x,cosxf(x)+f(x)

3. Periodicity

! If f ( |} is the periodIf f ( x ) has period T , then f ( a x _+b ) withaTfor the period

4. Boundedness

∣ s i n x ∣ ≤ 1 , ∣ c o s x ∣ ≤ 1 , ∣ a r c s i n x ∣ ≤ π 2 , ∣ a r c c o s x ∣ ≤ π |sinx| \leq1,|cosx| \leq1,|arcsinx| \leq\frac{\pi}{2},|arccosx| \leq\pi sinx1cosx1arcsinx2parccosxPi

Supplement: Common functions
1)y = arctan ⁡ xy=\arctan xy=arctanx
Insert image description here
2) y = arcsin ⁡ x y=\arcsin x y=arcsinx
Insert image description here
3)y = arccos ⁡ xy=\arccos xy=arccosx
Insert image description here
4) Sign function:
y = sgnx= { − 1 , x < 0 0 , x = 0 1 , x > 0 \begin{cases} -1, x<0\\ 0, x=0\\ 1, x >0\\ \end{cases}1x<00x=01x>0
5) Rounding function: y = [ x ] y = [x]y=[x]
x − 1 < [ x ] ≤ x x-1<[x]\leq x x1<[x]x

(2) Composite function

Compounding is possible only when the intersection of the domain of the outer function and the value domain of the inner function is not empty.

(3) The concept and nature of limit

1. The concept of limits

1) Sequence limit

∀ ϵ > 0, ∃ N > 0, when n > N, there is always ∣ xn − a ∣ < ϵ, then it is called lim ⁡ x → ∞ xn = a \forall \epsilon>0, \exists N>0, when When n>N, there is always |x_n-a|< \epsilon, then it is called\displaystyle\lim_{x\to\infty}x_n=aϵ>0N>0 , when n>When N , there is always xna<ϵ , then it is calledxlimxn=a

b < a , ∃ N , 当 n > N 时 , x n > b b<a,\exists N,当n>N时,x_n >b b<a , N , this n>When N , xn>b
c > a , ∃ N , 当 n > N 时 , x n < c c>a,\exists N,当n>N时,x_n <c c>a , N , this n>When N , xn<c
! The limit of the sequence limit {x} has nothing to do with the previous finite term. The limit of the sequence limit \{x\} has nothing to do with the previous finite term.The limit of the sequence limit { x } has nothing to do with the previous finite term
! Overall limit∃ ⇒ Partial limit∃ Overall limit\exists\RightarrowPartial limit\existsOverall limit Partial limit∃
! _ All partial limits ∃ ⇒ Whole limits ∃ All partial limits \exists\Rightarrowwhole limits\existsAll partial limits Overall limit

2) Function limit

(1) When the independent variable approaches infinity:

lim ⁡ x → + ∞ \lim_{x\to+\infty} limx+

∀ ϵ > 0 , ∃ X > 0 , when x > \existsϵ>0X>0 , when x>When X , there is always∣ f ( x )A<ϵ , then it is calledx+limf(x)=a

lim ⁡ x → − ∞ \lim_{x\to-\infty} limx

∀ ϵ > 0 , ∃ X > 0 , when x < − , \existsϵ>0X>0 , when x<When X , there is always f ( x )A<ϵ , then it is calledxlimf(x)=a

lim ⁡ x → ∞ \lim_{x\to\infty} limx

∀ ϵ > 0, ∃ X > 0, when ∣ x ∣ > , \existsϵ>0X>0 , when x >When X , there is always∣ f ( x )A<ϵ , then it is calledxlimf(x)=a

(2) The independent variable tends to a finite value:

∀ ϵ > 0 , ∃ δ > 0 , when 0 < ∣ x − x 0 ∣ > δ , there is always ∣ f ( x ) − A ∣ < ϵ , then it is called lim ⁡ x → ∞ f ( x ) = A \ forall \epsilon>0, \exists \delta>0, when 0<|x-x_0|>\delta, there is always |f(x)-A|< \epsilon, then it is called \displaystyle\lim_{x\to \infty}f(x)=Aϵ>0δ>0 , when 0<xx0>When δ , there is always f ( x )A<ϵ , then it is calledxlimf(x)=A

! x → xo , but x ≠ xo [that is, lim ⁡ x → ∞ f ( x ) has nothing to do with whether f ( x ) exists] infty}f(x) has nothing to do with whether f(x) exists】xxo,But x=xoi.e.xlimf ( x ) has nothing to do with whether f ( x ) exists ]

2. Nature of limits

1) General properties
(1) Boundedness

Convergence → \to There is a limit, but not vice versa

(2) Number protection
(3) Relationship with infinitesimal

lim ⁡ f ( x ) = A ↔ f ( x ) = A + α ( x ) , [where lim ⁡ α ( x ) = 0 ] \lim f(x) = A\leftrightarrow f(x) = A + \ alpha(x), [where\lim\alpha(x) = 0]limf(x)=Af(x)=A+α ( x ) , [ wherelima ( x )=0

2) Existence criteria
(1) Clamping criterion
(2) Monotone bounded criterion

3. Extreme algorithm

(1) Rational operation rules

l i m f ( x ) = A , l i m g ( x ) = B limf(x) = A,limg(x) = B limf(x)=A , l i m g ( x )=B , then

  • l i m ( f ( x ) ± g ( x ) ) = l i m f ( x ) ± g ( x ) lim(f(x)\pm g(x)) = limf(x) \pm g(x) lim(f(x)±g(x))=limf(x)±g(x)
  • l i m ( f ( x ) × g ( x ) ) = f ( x ) × g ( x ) lim(f(x)\times g(x)) = f(x)\times g(x) lim(f(x)×g(x))=f(x)×g(x)
  • limf ( x ) g ( x ) = limf ( x ) limg ( x ) , ( B ≠ 0 ) lim\frac{f(x)}{g(x)} = \frac{limf(x)}{limg( x)},(B \neq 0)limg(x)f(x)=l i m g ( x )limf(x)(B=0)
(2) Attention
  • exists ± \pm± does not exist= == does not exist
  • Does not exist ± \pm± does not exist= == not necessarily
  • exists × ÷ \times\div× ÷ does not exist= == not necessarily
  • Does not exist × ÷ \times\div× ÷ does not exist= == not necessarily
(3) Common conclusions
  • l i m f ( x ) = A ≠ 0 → l i m f ( x ) g ( x ) = A l i m g ( x ) limf(x) = A \neq 0 \rightarrow limf(x)g(x) = Alimg(x) limf(x)=A=0limf(x)g(x)=A l i m g ( x )
    means:the limit of the non-zero factor can be found first

  • l i m f ( x ) g ( x ) lim\frac{f(x)}{g(x)} limg(x)f(x)Existence, limg ( x ) = 0 → limf ( x ) = 0 limg(x) = 0 \rightarrow limf(x) = 0l i m g ( x )=0limf(x)=0

  • l i m f ( x ) g ( x ) = A lim\frac{f(x)}{g(x)} = A limg(x)f(x)=Alimf ( x ) = 0 → limg ( x ) = 0 limf(x) = 0 \rightarrow limg (x) = 0limf(x)=0l i m g ( x )=0

4. Mugless Small

1) Infinitesimal order: higher order, k order, same order, equivalent
2) Infinitesimal properties

  • The sum/product of a finite number of infinitesimals is still infinitesimal
  • The product of an infinitesimal and a bounded quantity is still infinitesimal

5. Mugendai

1) Common infinity comparisons:

To x → + ∞ \to+\infty+时, l n α x ≪ x β ≪ a x ln^\alpha x \ll x^\beta\ll a^x lnαxxbax

Ton → ∞ \to\infty时, l n α n ≪ n β ≪ a n ≪ n ! ≪ n n ln^\alpha n\ll n^\beta \ll a^n\ll n! \ll n^n lnα nnbann!nn

2) Properties of infinity:

  • The product of two infinities is still infinity
  • The sum of infinity and bounded variables is still an infinite amount

3) The relationship between infinity and unbounded variables:

  • infinite amount → \to Unbounded variable, but not vice versa [( − 1 ) n (-1)^n(1)n

4) The relationship between infinity and infinitesimal:

  • f ( x ) f(x) f ( x ) is infinitesimal, andf ( x ) ≠ 0 f(x)\neq 0f(x)=0 , then1 f ( x ) \frac{1}{f(x)}f(x)1is ∞ \infty
    ! Iff ( x ) ≠ 0 f(x)\neq 0f(x)=0 , then1 f ( x ) \frac{1}{f(x)}f(x)1meaningless

(4) Left and right limits

  1. The limit of the piecewise function at the dividing point
  2. e ∞ e^\inftye type limit
  3. a r c t a n ∞ arctan\infty a r c t a n type limit

(5) Find the limit

1. Find the limit of the sum\product of n terms

1) Find the sum formula first, then find the limit
2) Pinch theorem: The sum of n terms fails, and the degree of the numerator and denominator is not equal
3) Definite integral definition: The degree of the numerator and denominator are both equal, and the denominator is one more than the degree of the numerator.

2. Finding limits indefinitely

(1) 0 0 \frac{0}{0} 00

0 0 \frac{0}{0} 00: { Equivalent to infinitesimal L'Hôpital's law: 0 0 or ∞ ∞ Taylor's formula\begin{cases} Equivalent to infinitesimal\\ L'Hôpital's law: \frac{0}{0} or \frac{\infty}{\infty }\\ Taylor formula\\ \end{cases}Equivalent to infinitesimalLópida 's Law : _00orTaylor formula

Supplement: Equivalent to infinitesimal

  • s i n x , t a n x , a r c s i n x , a r c t a n x , l n ( 1 + x ) , e x − 1 ∼ x sinx,tanx,arcsinx,arctanx,ln(1+x),e^x-1 \sim x sinxtanxarcsinxarctanxln(1+x ) ex1x
  • a x − 1 x ∼ l n a \frac{a^x-1}{x}\sim lna xax1lna
  • ( 1 + x ) α − 1 ∼ α x (1+x)^\alpha-1\sim \alpha x(1+x)a1αx
  • ( 1 + α ( x ) β ( x ) ) − 1 ∼ α ( x ) β ( x ) ( α ( x ) → 0 , α ( x ) β ( x ) → 0 ) (1+\alpha(x) ^{\beta(x)} )-1\sim \alpha (x)\beta(x) (\alpha(x)\rightarrow0,\alpha(x)\beta(x)\rightarrow0)(1+a ( x )b ( x ) )1a ( x ) b ( x ) a ( x )0 α ( x ) β ( x )0
  • 1 − cosx ∼ 1 2 x 2 1-cosx \sim \frac{1}{2}x^21c o s x21x2
  • x − l n ( 1 + x ) ∼ 1 2 x 2 x-ln(1+x)\sim \frac{1}{2}x^2 xln(1+x)21x2
  • x − s i n x ∼ 1 6 x 3 x-sinx\sim \frac{1}{6}x^3 xs i n x61x3
  • a r c s i n x − x ∼ 1 6 x 3 arcsinx-x\sim \frac{1}{6}x^3 arcsinxx61x3
  • t a n x − x ∼ 1 3 x 3 tanx-x\sim \frac{1}{3}x^3 t a n xx31x3
  • x − a r c t a n x ∼ 1 3 x 3 x-arctanx\sim \frac{1}{3}x^3 xarctanx31x3

Supplement: Replacement formula

  • u ( x ) v ( x ) → e v ( x ) l n u ( x ) u(x)^{v(x)}\to e^{v(x)lnu(x)} u(x)v(x)ev ( x ) l n u ( x )
  • l n ( … … ) → l n ( 1 + △ ) ∼ △ ln(……)\to ln(1+\triangle)\sim \triangle ln()ln(1+)
  • ( … … ) − 1 → { e △ − 1 ∼ △ ( 1 + △ ) a − 1 ∼ a △ (……)-1\to \begin{cases} e^\triangle-1\sim\triangle\\ (1+\triangle)^a-1\sim a\triangle \end{cases} ()1{ e1(1+)a1a
(2) ∞ ∞ \frac{\infty}{\infty}

∞ ∞ \frac{\infty}{\infty} : { 0 0 Lópida's law: 0 0 or ∞ ∞ lim ⁡ x → + ∞ amxm + … … + a 1 x + a 0 bnxn + … … + b 1 x + b 0 = { 0 , m < n ∞ , m > nambn , m = n \begin{cases} \frac{0}{0}\\ Lópida's rule: \frac{0}{0} or \frac{\infty}{\infty}\\ \ displaystyle\lim_{x\to+\infty}\frac{a_mx^m+…+a_1x+a_0}{b_nx^n+…+b_1x+b_0}=\begin{cases} 0, m<n\\ \infty, m>n\\ \frac{a_m}{b_n},m=n\\ \end{cases} \end{cases}00Lópida 's Law : _00orx+limbnxn++b1x+b0amxm++a1x+a0=0m<nm>nbnamm=n

Supplement: infinity

  • To x → + ∞ \to+\infty+时, l n α x ≪ x β ≪ a x ln^\alpha x \ll x^\beta\ll a^x lnαxxbax

  • Ton → ∞ \to\infty时, l n α n ≪ n β ≪ a n ≪ n ! ≪ n n ln^\alpha n\ll n^\beta \ll a^n\ll n! \ll n^n lnα nnbann!nn

  • infinite amount → \to Unbounded variable, but not vice versa [( − 1 ) n (-1)^n(1)n

(3)1 ∞ 1^{\infty}1

1 ∞ 1^{\infty}1 : Identity deformation,(1 + △) 1 △ ∼ e (1+\triangle)^{\frac{1}{\triangle}}\sim e(1+)1e

(4)∞ 0 \infty^000 ∞ 0^\infty0

{ ∞ 0 0 ∞ → u ( x ) v ( x ) → e v ( x ) l n u ( x ) \begin{cases} \infty^0\\ 0^\infty\\ \end{cases}\to u(x)^{v(x)}\to e^{v(x)lnu(x)} { 00u(x)v(x)ev ( x ) l n u ( x )

(5) 0 × ∞ 0\times\infty 0×

0 × ∞ 0\times\infty 0× { 0 1 ∞ → 0 0 ∞ 1 0 → ∞ ∞ \begin{cases} \frac{0}{\frac{1}{\infty}}\to\frac{0}{0}\\ \\ \frac{\infty}{\frac{1}{0}}\to\frac{\infty}{\infty}\\ \end{cases} 100001

(6)∞ − ∞ \infty-\infty

∞ − ∞ : → 0 × ∞ \infty-\infty:\to 0\times\infty 0× Same as above

Supplement: Substitution Principle

  • This value is a continuous point in the function interval [ lim ⁡ x → x 0 f ( x ) = f ( x 0 ) \displaystyle\lim_{x\to x_0}f(x) = f(x_0)xx0limf(x)=f(x0)
  • Partial factor limit ∃ \exists即可拆分【 ∃ lim ⁡ x → x 0 f ( x ) = A , lim ⁡ x → x 0 [ f ( x ) ± g ( x ) ] = A + lim ⁡ x → x 0 g ( x ) \exists\displaystyle\lim_{x\to x_0}f(x) = A,\displaystyle\lim_{x\to x_0}[f(x)\pm g(x)] = A + \displaystyle\lim_{x\to x_0}g(x) xx0limf(x)=Axx0lim[f(x)±g(x)]=A+xx0limg ( x ) (in questions involving unknown numbers, the limit should be removed first∃ \exists
  • The addition and subtraction relationships can be exchanged under certain conditions
    [ α ∼ α 1 , β ∼ β 1 , and { lim ⁡ = α 1 β 1 = A ≠ 1 , then α − β ∼ α 1 − β 1 lim ⁡ = α 1 β 1 = A ≠ − 1 , then α + β ∼ α 1 + β 1 \alpha \sim \alpha_1, \beta \sim \beta_1, and \begin{cases}\lim = \frac{\alpha_1}{\beta_1} = A \neq 1 , then \alpha - \beta \sim \alpha_1 - \beta_1\\ \lim = \frac{\alpha_1}{\beta_1} = A \neq -1 , then \alpha + \beta \sim \ alpha_1 + \beta_1\\ \end{cases}aa1, bb1, and{ lim=b1a1=A=1,Then αba1b1lim=b1a1=A=1,Then α+ba1+b1

3. Mean value theorem

(6) Judgment of continuity and properties of continuous functions

1. Determine continuity

1) Definition

y = f ( x ) y=f(x) y=f ( x ) at pointx 0 x_0x0There is a definition in a certain decentered neighborhood, then { lim ⁡ △ x → 0 △ y = lim ⁡ △ x → 0 [ f ( x 0 + △ x ) − f ( x 0 ) ] lim ⁡ △ x → 0 f ( x ) = f ( x 0 ) \begin{cases} \displaystyle\lim_{\triangle x\to 0}\triangle y = \displaystyle\lim_{\triangle x\to 0}[f(x_0+\triangle x)-f (x_0)]\\ \displaystyle\lim_{\triangle x\to 0}f(x) = f(x_0)\\ \end{cases}x0limy=x0lim[f(x0+x)f(x0)]x0limf(x)=f(x0)

2) Theorem

f ( x ) and g ( x ) f (x) and g (x)f ( x ) and g ( x ) are at pointx 0 x_0x0are continuous, then f ( x ) ± g ( x ) , f ( x ) g ( x ) , f ( x ) g ( x ) ( g ( x ) ≠ 0 ) f (x)\pm g(x), f(x)g(x),\frac{f(x)}{g(x)}(g(x)\neq 0)f(x)±g(x)f(x)g(x)g(x)f(x)(g(x)=0 ) is continuous at the point

②Suppose function u = ϕ ( x ) u = \phi (x)u=ϕ ( x ) at pointx 0 x_0x0is continuous at , and ϕ ( x 0 ) = u 0 \phi (x_0) = u_0ϕ ( x0)=u0, function y = f ( u ) y = f(u)y=f ( u ) pointu 0 u_0u0is continuous at , then y = f [ ϕ ( x ) ] y = f[\phi(x)]y=f [ ϕ ( x ) ] atx = x 0 x = x_0x=x0Continuous everywhere

③Basic elementary functions are continuous within their domain

④Elementary functions are continuous within their definition interval

2. Properties of continuous functions

f ( x ) ∈ C [ a , b ] f(x)\in C[a,b] f(x)C[a,b]

1) (m,M) f ( x ) f(x) f ( x ) has min on [a,b], MAX
2)(bounded) ∃ k > 0, so that ∣ f ( kk>0 , so that f ( x ) k
3)(zero point) and f ( a ) f ( b ) < 0 , ∃ c ∈ [ a , b ] , so that f ( c ) = 0 and f(a)f(b)<0, \exists c\ in [a,b], make f(c)=0And f ( a ) f ( b )<0c[a,b ] , so that f ( c )=0
4)(intermediate value) ∀ η ∈ [ m , M ] , then ∃ ξ ∈ [ a , b ] , so that f ( ξ ) = η \forall\eta\in[m,M], then \exists\xi \in[a,b], so that f(\xi)=\etaη[m,M ] , then ξ[a,b ] , so that f ( ξ )=the

(7) Types of discontinuities

Category 1: f ( a − 0 ) = f ( a + 0 ) f(a-0)=f(a+0)f(a0)=f(a+0 ) all have values

{Can remove discontinuous points: f ( a − 0 ) = f ( a + 0 ) ≠ f ( a ) Jump discontinuous points: f ( a − 0 ) ≠ f ( a + 0 ) \begin{cases} Can remove discontinuous points : f(a-0)=f(a+0)\neq f(a)\\ Jump discontinuity point: f(a-0)\neq f(a+0)\\ \end{cases}{ Can remove discontinuities : f ( a _0)=f(a+0)=f(a)Jump discontinuity point : f ( a0)=f(a+0)

The second category: f ( a − 0 ) , f ( a + 0 ) f(a-0), f(a+0)f(a0)f(a+0 ) At least one does not exist

Before judging the discontinuity point (that is, before finding the limit), deform if you can, and don’t rush to substitute.

Guess you like

Origin blog.csdn.net/xuansoyo/article/details/127878143