Detailed explanation of trigonometric functions and their formulas

geometric definition

right triangle definition

There is a right angled triangle as follows
Insert image description here

Then the trigonometric function is defined as follows

sine cosine tangent cotangent secant cosecant
sin ⁡ θ = ah \sin\theta=\frac{a}{h}sini=ha cos ⁡ θ = bh \cos\theta=\frac{b}{h}cosi=hb tan ⁡ θ = ab \tan\theta=\frac{a}{b}tani=ba cot ⁡ θ = b a \cot\theta=\frac{b}{a} coti=ab sec ⁡ θ = h b \sec\theta=\frac{h}{b} seci=bh csc ⁡ θ = h a \csc\theta=\frac{h}{a} csci=ah

Since it is a right triangle, this definition can only define θ ∈ ( 0 , π 2 ) \theta\in(0,\frac{\pi}{2})i(0,2p) range

unit circle definition

There is a unit circle x 2 + y 2 = 1 x^2+y^2=1x2+y2=1 as follows
Insert image description here

P ( x , y ) P(x,y) P(x,y ) is a point on the unit circle

Then the trigonometric function is defined as follows

sine cosine tangent cotangent secant cosecant
sin ⁡ θ = y 1 = y \sin\theta=\frac{y}{1}=ysini=1y=y cos ⁡ θ = x 1 = x \cos\theta=\frac{x}{1}=x cosi=1x=x tan ⁡ θ = yx \tan\theta=\frac{y}{x}tani=xy cot ⁡ θ = x y \cot\theta=\frac{x}{y} coti=yx sec ⁡ θ = 1 x \sec\theta=\frac{1}{x} seci=x1 csc ⁡ θ = 1 y \csc\theta=\frac{1}{y}csci=y1

At this time θ ∈ ( − ∞ , + ∞ ) \theta\in(-\infty,+\infty)i(,+)

  • θ > 0 \theta>0 i>Rotate counterclockwise at 0 o'clock
  • θ < 0 \theta<0 i<Rotate clockwise at 0 o'clock

Function image

sine function

y = sin ⁡ xy=\sin xy=sinx
Insert image description here

Know the sine function from the graph

  • The minimum positive period is 2 π 2\pi2 p.m
  • The axis of symmetry is x = π 2 + k π , k ∈ Z x=\frac{\pi}{2}+k\pi,\ k\in\mathbb{Z}x=2p+, kZ
  • The center of symmetry is (k π, 0), k ∈ Z (k\pi,0),\ k\in\mathbb{Z}( ,0), kZ
  • The values ​​in the first and second quadrants are positive, and the values ​​in the third and fourth quadrants are negative.

cosine function

y = cos ⁡ xy=\cos xy=cosx
Insert image description here

Know the cosine function from the graph

  • The minimum positive period is 2 π 2\pi2 p.m
  • The axis of symmetry is x = k π , k ∈ Z x=k\pi,\ k\in\mathbb{Z}x=, kZ
  • The center of symmetry is ( π 2 + k π , 0 ) , k ∈ Z (\frac{\pi}{2}+k\pi,0),\ k\in\mathbb{Z}(2p+,0), kZ
  • The values ​​in the first and fourth quadrants are positive, and the values ​​in the second and third quadrants are negative.

tangent function

y = tan ⁡ xy=\tan xy=tanx
Insert image description here

Know the tangent function from the graph

  • The minimum positive period is π \piPi
  • The center of symmetry is (k π, 0), k ∈ Z (k\pi,0),\ k\in\mathbb{Z}( ,0), kZ
  • The values ​​in the first and third quadrants are positive, and the values ​​in the second and fourth quadrants are negative.

cotangent function

y = cot ⁡ x y=\cot x y=cotx
Insert image description here

Know the cotangent function from the graph

  • The minimum positive period is π \piPi
  • The center of symmetry is ( π 2 + k π , 0 ) , k ∈ Z (\frac{\pi}{2}+k\pi,0),\ k\in\mathbb{Z}(2p+,0), kZ
  • The values ​​in the first and third quadrants are positive, and the values ​​in the second and fourth quadrants are negative.

secant function

y = sec ⁡ x y=\sec x y=secx
Insert image description here

Know the secant function from the graph

  • The minimum positive period is 2 π 2\pi2 p.m
  • The axis of symmetry is x = k π , k ∈ Z x=k\pi,\ k\in\mathbb{Z}x=, kZ
  • The center of symmetry is ( π 2 + k π , 0 ) , k ∈ Z (\frac{\pi}{2}+k\pi,0),\ k\in\mathbb{Z}(2p+,0), kZ
  • The values ​​in the first and fourth quadrants are positive, and the values ​​in the second and third quadrants are negative.

cosecant function

y = csc ⁡ xy=\csc xy=cscx
Insert image description here

Know the cosecant function from the graph

  • The minimum positive period is 2 π 2\pi2 p.m
  • The axis of symmetry is x = π 2 + k π , k ∈ Z x=\frac{\pi}{2}+k\pi,\ k\in\mathbb{Z}x=2p+, kZ
  • The center of symmetry is (k π, 0), k ∈ Z (k\pi,0),\ k\in\mathbb{Z}( ,0), kZ
  • The values ​​in the first and second quadrants are positive, and the values ​​in the third and fourth quadrants are negative.

identity

express each other

It can be seen from the definition of trigonometric functions

  • tan ⁡ θ = sin ⁡ θ cos ⁡ θ \tan\theta=\frac{\sin\theta}{\cos\theta}tani=cosisini
  • cot ⁡ θ = 1 tan ⁡ θ = cos ⁡ θ sin ⁡ θ \cot\theta=\frac{1}{\tan\theta}=\frac{\cos\theta}{\sin\theta}coti=tani1=sinicosi
  • sec ⁡ θ = 1 cos ⁡ θ \sec\theta=\frac{1}{\cos\theta}seci=cosi1
  • csc ⁡ θ = 1 sin ⁡ θ \csc\theta=\frac{1}{\sin\theta} csci=sini1

Pythagoras Identity

It can be known from the definition of a right triangle and the Pythagorean theorem or the definition of the unit circle

  • sin ⁡ 2 θ + cos ⁡ 2 θ = 1 \sin^2\theta+\cos^2\theta=1sin2i+cos2i=1

It can be deduced from this

  • tan ⁡ 2 θ + 1 = sec ⁡ 2 θ \tan^2\theta+1=\sec^2\thetatan2i+1=sec2i
  • cot ⁡ 2 θ + 1 = csc ⁡ 2 θ \cot^2\theta+1=\csc^2\thetacot2i+1=csc2i

induction formula

形如sin ⁡ / cos ⁡ / tan ⁡ / cot ⁡ / sec ⁡ / csc ⁡ ( θ + k π 2 ) , k ∈ Z \sin/\cos/\tan/\cot/\sec/\csc(\theta+ \frac{k\pi}{2}),\k\in\mathbb{Z}sin/cos/tan/cot/sec/csc ( θ+2), kZwhere "/// "means or.
Transformation formula:odd to even unchanged, look at the quadrants for symbols.

  1. Odd and even means kkThe parity of k . If it is an odd number, thensin ⁡ \sinsin andcos ⁡ \coscos interchange,tan ⁡ \tantan andcot ⁡ \cotcot interchange,sec ⁡ \secseccsc ⁡ \csccsc interchange; even numbers remain unchanged
  2. θ \thetaθ is regarded as an acute angle, judgeθ + k π 2 \theta+\frac{k\pi}{2}i+2Quadrant. If the trigonometric function takes a negative value in this quadrant, add a negative sign in front of it.

like:

  • sin ⁡ ( θ + π 2 ) = cos ⁡ θ \sin(\theta+\frac{\pi}{2})=\cos\thetasin ( i+2p)=cosθ
    k = 1 k=1 k=1 is an odd number,sin ⁡ \sinsin changesto cos ⁡ \coscos
    θ + π 2 \theta+\frac{\pi}{2}i+2pIn the second quadrant, sin ⁡ \sinThe value of sin is positive and the sign is positive
  • sin ⁡ ( θ + π ) = − sin ⁡ θ \sin(\theta+\pi)=-\sin\thetasin ( i+p )=sinθ
    k = 2 k=2 k=2 is an even number, there is no need to change
    θ + π \theta+\pii+π is in the third quadrant,sin ⁡ \sinThe value of sin is negative and the sign is negative
  • cos ⁡ ( θ + 3 π 2 ) = sin ⁡ θ \cos(\theta+\frac{3\pi}{2})=\sin\thetacos ( i+23 p.m)=sinθ
    k = 3 k=3 k=3 is an odd number,cos ⁡ \coscos becomessin ⁡ \sinsin
    θ + 3 π 2 \theta+\frac{3\pi}{2}i+23 p.mIn the fourth quadrant, cos ⁡ \cosThe cos value is positive and the sign is positive
  • tan ⁡ ( θ − π 2 ) = − cot ⁡ θ \tan(\theta-\frac{\pi}{2})=-\cot\thetatan ( θ2p)=cotθ
    k = − 1 k=-1 k=1 is an odd number,tan ⁡ \tantan becomescot ⁡ \cotcot
    θ − π 2 \theta-\frac{\pi}{2}i2pIn the fourth quadrant, tan ⁡ \tanThe tan value is negative and the sign is negative
  • sin ⁡ ( − θ ) = − sin ⁡ θ \sin(-\theta)=-\sin\thetasin ( θ )=sinθ
    k = 0 k=0 k=0 is an even number, and there is no need to change
    − θ -\thetaθ is in the fourth quadrant,sin ⁡ \sinThe value of sin is negative and the sign is negative

The above conclusion can be easily drawn from the function graph

sum and difference formula

sine

  • sin ⁡ ( θ 1 + θ 2 ) = sin ⁡ θ 1 cos ⁡ θ 2 + cos ⁡ θ 1 sin ⁡ θ 2 \sin(\theta_1+\theta_2)=\sin \theta_1\cos \theta_2+\cos \theta_1\sin \theta_2sin ( i1+i2)=sini1cosi2+cosi1sini2
  • sin ⁡ ( θ 1 − θ 2 ) = sin ⁡ θ 1 cos ⁡ θ 2 − cos ⁡ θ 1 sin ⁡ θ 2 \sin(\theta_1-\theta_2)=\sin \theta_1\cos \theta_2-\cos \theta_1 \sin\theta_2sin ( i1i2)=sini1cosi2cosi1sini2
proving process

Assume a unit circle θ 1 2 + θ 2 2 = 1 \theta_1^2+\theta_2^2=1i12+i22=1
Insert image description here

∣ AG ∣ = sin ⁡ θ 2 , ∣ OG ∣ = cos ⁡ θ 2 |AG|=\sin\theta_2,\ |OG|=\cos\theta_2AG=sini2, OG=cosi2
∴ ∣ MP ∣ = ∣ GR ∣ = ∣ OG ∣ sin ⁡ θ 1 = sin ⁡ θ 1 cos ⁡ θ 2 \therefore |MP|=|GR|=|OG|\sin\theta_1=\sin\theta_1\cos\ . theta_2MP=GR=OGsini1=sini1cosi2
∵ △ O N P ∼ △ G N M \because\triangle ONP\sim\triangle GNM ONPGNM (one angle of a right triangle is equal)
∴ ∠ NGM = ∠ NOP = θ 1 \therefore\angle NGM=\angle NOP=\theta_1NGM=NOP=i1
∵ ∠ N G P + ∠ A G M = ∠ M A G + ∠ A G M = 90 ° \because\angle NGP+\angle AGM=\angle MAG+\angle AGM=90\degree NGP+AGM=MAG+AGM=90°
∴ ∠ MAG = ∠ NGM = θ 1 \therefore\angle MAG=\angle NGM=\theta_1MAG=NGM=i1
∴ ∣ AM ∣ = ∣ AG ∣ cos ⁡ θ 1 = cos ⁡ θ 1 sin ⁡ θ 2 \therefore |AM|=|AG|\cos\theta_1=\cos\theta_1\sin\theta_2AM=AGcosi1=cosi1sini2
∴ \therefore
sin ⁡ ( θ 1 + θ 2 ) = ∣ AP ∣ = ∣ AM ∣ + ∣ MP ∣ = sin ⁡ θ 1 cos ⁡ θ 2 + cos ⁡ θ 1 sin ⁡ θ 2 \begin{aligned}\sin(\theta_1+ \theta_2)&=|AP|=|AM|+|MP|\\&=\sin\theta_1\cos\theta_2+\cos\theta_1\sin\theta_2\end{aligned}sin ( i1+i2)=AP=AM+MP=sini1cosi2+cosi1sini2

θ 2 = − θ 2 \theta_2=-\theta_2i2=i2
sin ⁡ ( θ 1 − θ 2 ) = sin ⁡ [ θ 1 + ( − θ 2 ) ] = sin ⁡ θ 1 cos ⁡ ( − θ 2 ) + cos ⁡ θ 1 sin ⁡ ( − θ 2 ) = sin ⁡ θ 1 cos ⁡ θ 2 − cos ⁡ θ 1 sin ⁡ θ 2 \begin{aligned}\sin(\theta_1-\theta_2)&=\sin[\theta_1+(-\theta_2)]\\&=\sin\theta_1 \cos(-\theta_2)+\cos\theta_1\sin(-\theta_2)\\&=\sin\theta_1\cos\theta_2-\cos\theta_1\sin\theta_2\end{aligned}sin ( i1i2)=sin [ i1+( i2)]=sini1cos ( θ2)+cosi1sin ( θ2)=sini1cosi2cosi1sini2

cosine

  • cos ⁡ ( θ 1 + θ 2 ) = cos ⁡ θ 1 cos ⁡ θ 2 − sin ⁡ θ 1 sin ⁡ θ 2 \cos(\theta_1+\theta_2)=\cos \theta_1\cos \theta_2-\sin \theta_1\ without \theta_2cos ( i1+i2)=cosi1cosi2sini1sini2
  • cos ⁡ ( θ 1 − θ 2 ) = cos ⁡ θ 1 cos ⁡ θ 2 + sin ⁡ θ 1 sin ⁡ θ 2 \cos(\theta_1-\theta_2)=\cos \theta_1\cos \theta_2+\sin \theta_1\ without \theta_2cos ( i1i2)=cosi1cosi2+sini1sini2
proving process

Let θ 2 = θ 2 + π 2 \theta_2=\theta_2+\frac{\pi}{2}i2=i2+2p
cos ⁡ ( θ 1 + θ 2 ) = sin ⁡ ( θ 1 + θ 2 + π 2 ) = sin ⁡ θ 1 cos ⁡ ( θ 2 + π 2 ) + cos ⁡ θ 1 sin ⁡ ( θ 2 + π ) = cos ⁡ θ 1 cos ⁡ θ 2 − sin ⁡ θ 1 sin ⁡ θ 2 \begin{aligned}\cos(\theta_1+\theta_2)&=\sin(\theta_1+\theta_2+\frac{\pi}{2}; )\\&=\sin\theta_1\cos(\theta_2+\frac{\pi}{2})+\cos\theta_1\sin(\theta_2+\frac{\pi}{2})\\&=\cos \theta_1\cos\theta_2-\sin\theta_1\sin\theta_2\end{aligned}cos ( i1+i2)=sin ( i1+i2+2p)=sini1cos ( i2+2p)+cosi1sin ( i2+2p)=cosi1cosi2sini1sini2

θ 2 = − θ 2 \theta_2=-\theta_2i2=i2
cos ⁡ ( θ 1 − θ 2 ) = cos ⁡ [ θ 1 + ( − θ 2 ) ] = cos ⁡ θ 1 cos ⁡ ( − θ 2 ) − sin ⁡ θ 1 sin ⁡ ( − θ 2 ) = cos ⁡ θ 1 cos ⁡ θ 2 + sin ⁡ θ 1 sin ⁡ θ 2 \begin{aligned}\cos(\theta_1-\theta_2)&=\cos[\theta_1+(-\theta_2)]\\&=\cos\theta_1 \cos(-\theta_2)-\sin\theta_1\sin(-\theta_2)\\&=\cos\theta_1\cos\theta_2+\sin\theta_1\sin\theta_2\end{aligned}cos ( i1i2)=cos [ i1+( i2)]=cosi1cos ( θ2)sini1sin ( θ2)=cosi1cosi2+sini1sini2

The ratio
tan ⁡ ( θ 1 + θ 2 ) = tan ⁡ θ 1 + tan ⁡ θ 2 1 − tan ⁡ θ 1 tan ⁡ θ 2 \tan(\theta_1+\theta_2)=\frac{\tan \theta_1+\tan \theta_2 }{1-\tan \theta_1\tan \theta_2}tan ( θ1+i2)=1tani1tani2tani1+tani2
tan ⁡ ( θ 1 − θ 2 ) = tan ⁡ θ 1 − tan ⁡ θ 2 1 + tan ⁡ θ 1 tan ⁡ θ 2 \tan(\theta_1-\theta_2)=\frac{\tan \theta_1-\tan \ theta_2}{1+\tan \theta_1\tan \theta_2}tan ( θ1i2)=1+tani1tani2tani1tani2

proving process

tan ⁡ ( θ 1 + θ 2 ) = sin ⁡ ( θ 1 + θ 2 ) cos ⁡ ( θ 1 + θ 2 ) = sin ⁡ θ 1 cos ⁡ θ 2 + cos ⁡ θ 1 sin ⁡ θ 2 cos ⁡ θ 1 cos ⁡ θ 2 − sin ⁡ θ 1 sin ⁡ θ 2 = sin ⁡ θ 1 cos ⁡ θ 2 cos ⁡ θ 1 cos ⁡ θ 2 + cos ⁡ θ 1 sin ⁡ θ 2 cos ⁡ θ 1 cos ⁡ θ 2 cos ⁡ θ 2 1 cos ⁡ θ 2 cos ⁡ θ 1 cos ⁡ θ 2 − sin ⁡ θ 1 sin ⁡ θ 2 cos ⁡ θ 1 cos ⁡ θ 2 = sin ⁡ θ 1 cos ⁡ θ 1 + sin ⁡ θ 2 cos ⁡ θ 2 1 − sin ⁡ θ 1 cos ⁡ θ 1 sin ⁡ θ 2 cos ⁡ θ 2 = tan ⁡ θ 1 + tan ⁡ θ 2 1 − tan ⁡ θ 1 tan ⁡ θ 2\begin{aligned}\tan(\theta_1+\theta_2)&=\frac{\sin(\theta_1+\theta_2)}{\cos(\theta_1+\theta_2)}\\&=\frac{\sin\theta_1\cos\theta_2+\cos\theta_1\sin\theta_2}{\cos\theta_1\cos\theta_2-\sin\theta_1\sin\theta_2}\\&=\frac{\frac{\sin\theta_1\cos\theta_2}{\cos\theta_1\cos\theta_2}+\frac{\cos\theta_1\sin\theta_2}{\cos\theta_1\cos\theta_2}}{\frac{\cos\theta_1\cos\theta_2}{\cos\theta_1\cos\theta_2}-\frac{\sin\theta_1\sin\theta_2}{\cos\theta_1\cos\theta_2}}\\&=\frac{\frac{\sin\theta_1}{\cos\theta_1}+\frac{\sin\theta_2}{\cos\theta_2}}{1-\frac{\sin\theta_1}{\cos\theta_1}\frac{\sin\theta_2}{\cos\theta_2}}\\&=\frac{\tan\theta_1+\tan\theta_2}{1-\tan\theta_1\tan\theta_2}\end{aligned}tan ( θ1+i2)=cos ( i1+i2)sin ( i1+i2)=cosi1cosi2sini1sini2sini1cosi2+cosi1sini2=cosi1cosi2cosi1cosi2cosi1cosi2sini1sini2cosi1cosi2sini1cosi2+cosi1cosi2cosi1sini2=1cosi1sini1cosi2sini2cosi1sini1+cosi2sini2=1tani1tani2tani1+tani2

θ 2 = − θ 2 \theta_2=-\theta_2i2=i2
tan ⁡ ( θ 1 − θ 2 ) = tan ⁡ [ θ 1 + ( − θ 2 ) ] = tan ⁡ θ 1 + tan ⁡ ( − θ 2 ) 1 − tan ⁡ θ 1 tan ⁡ ( − θ 2 ) = tan ⁡ θ 1 − tan ⁡ θ 2 1 + tan ⁡ θ 1 tan ⁡ θ 2 \begin{aligned}\begin(\theta_1-\theta_2)&=\begin[\theta_1+(-\theta_2)]\\&= \frac{\tan\theta_1+\tan(-\theta_2)}{1-\tan\theta_1\tan(-\theta_2)}\\&=\frac{\tan\theta_1-\tan\theta_2}{1+ \tan\theta_1\tan\theta_2}\end{aligned}tan ( θ1i2)=tan [ θ1+( i2)]=1tani1tan ( θ2)tani1+tan ( θ2)=1+tani1tani2tani1tani2

double angle formula

It can be deduced from the sum-difference formula

  • sin ⁡ 2 θ = 2 sin ⁡ θ cos ⁡ θ = 2 sin ⁡ θ cos ⁡ θ sin ⁡ 2 θ + cos ⁡ 2 θ = 2 tan ⁡ θ 1 + tan ⁡ 2 θ \begin{aligned}\sin 2\theta&; =2\sin\theta\cos\theta\\&=\frac{2\sin\theta\cos\theta}{\sin^2\theta+\cos^2\theta}\\&=\frac{2\ tan\theta}{1+\tan^2\theta}\end{aligned}sin2 i=2sinicosi=sin2i+cos2i2sinicosi=1+tan2i2tani
  • cos ⁡ 2 θ = cos ⁡ 2 θ − sin ⁡ 2 θ = 1 − tan ⁡ 2 θ 1 + tan ⁡ 2 θ = 2 cos ⁡ 2 θ − 1 = 1 − 2 sin ⁡ 2 θ \begin{aligned}\cos 2\theta&=\cos^2\theta-\sin^2\theta\\&=\frac{1-\tan^2\theta}{1+\tan^2\theta}\\&=2\cos ^2 \theta-1\\&=1-2\sin^2\theta\end{aligned}cos2 i=cos2isin2i=1+tan2i1tan2i=2cos2i1=12sin2i
  • tan ⁡ 2 θ = 2 tan ⁡ θ 1 − tan ⁡ 2 θ \tan 2\theta=\frac{2\tan \theta}{1-\tan^2 \theta};tan2 i=1tan2i2tani

fall official

It is easy to derive from the double angle formula

  • sin ⁡ 2 θ = 1 − cos ⁡ 2 θ 2 \sin^2\theta=\frac{1-\cos2\theta}{2}sin2i=21cos2 i
  • cos ⁡ 2 θ = cos ⁡ 2 θ + 1 2 \cos^2\theta=\frac{\cos2\theta+1}{2}cos2i=2cos2 i+1

It is easy to derive from the above two formulas

  • tan ⁡ 2 θ = 1 − cos ⁡ 2 θ 1 + cos ⁡ 2 θ \tan^2\theta=\frac{1-\cos2\theta}{1+\cos2\theta};tan2i=1+cos2 i1cos2 i

half-width formula

The infinitive set
tan ⁡ θ 2 = 1 − cos ⁡ θ sin ⁡ θ = sin ⁡ θ 1 + cos ⁡ θ \tan\frac{\theta}{2}=\frac{1-\cos \theta}{ \sin \theta}=\frac{\sin\theta}{1+\cos\theta}tan2i=sini1cosi=1+cosisini

proving process

∵ cos ⁡ θ = 1 − 2 sin ⁡ 2 θ 2 \because \cos \theta=1-2\sin^2\frac{\theta}{2}cosi=12sin22i
∴ 1 − cos ⁡ θ = 2 sin ⁡ 2 θ 2 \therefore 1-\cos \theta=2\sin^2\frac{\theta}{2}1cosi=2sin22i
∵ sin ⁡ θ = 2 sin ⁡ θ 2 cos ⁡ θ 2 \because \sin \theta=2\sin\frac{\theta}{2}\cos\frac{\theta}{2}sini=2sin2icos2i
∴ \therefore
1 − cos ⁡ θ sin ⁡ θ = 2 sin ⁡ 2 θ 2 2 sin ⁡ θ 2 cos ⁡ θ 2 = sin ⁡ θ 2 cos ⁡ θ 2 = tan ⁡ θ 2 \begin{aligned}\frac{1-\ cos \theta}{\sin \theta}&=\frac{2\sin^2\frac{\theta}{2}}{2\sin\frac{\theta}{2}\cos\frac{\theta }{2}}\\&=\frac{\sin\frac{\theta}{2}}{\cos\frac{\theta}{2}}\\&=\tan\frac{\theta}{ 2}\end{aligned}sini1cosi=2sin2icos2i2sin22i=cos2isin2i=tan2i
∵ cos ⁡ θ = 2 cos ⁡ 2 θ 2 − 1 \because \cos \theta=2\cos^2\frac{\theta}{2}-1cosi=2cos22i1
∴ 1 + cos ⁡ θ = 2 cos ⁡ 2 θ 2 \therefore 1+\cos \theta=2\cos^2\frac{\theta}{2}1+cosi=2cos22i
∴ \therefore
sin ⁡ θ 1 + cos ⁡ θ = 2 sin ⁡ θ 2 cos ⁡ θ 2 2 cos ⁡ 2 θ 2 = sin ⁡ θ 2 cos ⁡ θ 2 = tan ⁡ θ 2 \begin{aligned}\frac{\sin\ theta}{1+\cos\theta}&=\frac{2\sin\frac{\theta}{2}\cos\frac{\theta}{2}}{2\cos^2\frac{\theta }{2}}\\&=\frac{\sin\frac{\theta}{2}}{\cos\frac{\theta}{2}}\\&=\tan\frac{\theta}{ 2}\end{aligned}1+cosisini=2cos22i2sin2icos2i=cos2isin2i=tan2i

Product and difference formula

  • sin ⁡ θ 1 sin ⁡ θ 2 = − 1 2 [ cos ⁡ ( θ 1 + θ 2 ) − cos ⁡ ( θ 1 − θ 2 ) ] \sin\theta_1\sin\theta_2=-\frac{1}{2 }[\cos(\theta_1+\theta_2)-\cos(\theta_1-\theta_2)]sini1sini2=21[ cos ( i1+i2)cos ( i1i2)]
  • sin ⁡ θ 1 cos ⁡ θ 2 = 1 2 [ sin ⁡ ( θ 1 + θ 2 ) + sin ⁡ ( θ 1 − θ 2 ) ] \sin\theta_1\cos\theta_2=\frac{1}{2}[ \sin(\theta_1+\theta_2)+\sin(\theta_1-\theta_2)]sini1cosi2=21[ sin ( i1+i2)+sin ( i1i2)]
  • cos ⁡ θ 1 sin ⁡ θ 2 = 1 2 [ sin ⁡ ( θ 1 + θ 2 ) − sin ⁡ ( θ 1 − θ 2 ) ] \cos\theta_1\sin\theta_2=\frac{1}{2}[ \sin(\theta_1+\theta_2)-\sin(\theta_1-\theta_2)]cosi1sini2=21[ sin ( i1+i2)sin ( i1i2)]
  • cos ⁡ θ 1 cos ⁡ θ 2 = 1 2 [ cos ⁡ ( θ 1 + θ 2 ) + cos ⁡ ( θ 1 − θ 2 ) ] \cos\theta_1\cos\theta_2=\frac{1}{2}[ \cos(\theta_1+\theta_2)+\cos(\theta_1-\theta_2)]cosi1cosi2=21[ cos ( i1+i2)+cos ( i1i2)]
proving process

The formula
{ sin ⁡ ( θ 1 + θ 2 ) = sin ⁡ θ 1 cos ⁡ θ 2 + cos ⁡ θ 1 sin ⁡ θ 2 ( 1 ) sin ⁡ ( θ 1 − θ 2 ) = sin ⁡ θ cos ⁡ θ 2 − cos ⁡ θ 1 sin ⁡ θ 2 ( 2 ) cos ⁡ ( θ 1 + θ 2 ) = cos ⁡ θ 1 cos ⁡ θ 2 − sin ⁡ θ 1 sin ⁡ θ 2 ( 3 ) cos ⁡ ( θ 1 − θ 2 ) = cos ⁡ θ 1 cos ⁡ θ 2 + sin ⁡ θ 1 sin ⁡ θ 2 ( 4 ) \begin{cases} \sin(\theta_1+\theta_2)=\sin\theta_1\cos\theta_2+\cos \theta_1\sin\theta_2&&&&&(1)\\ \sin(\theta_1-\theta_2)=\sin\theta_1\cos\theta_2-\cos\theta_1\sin\theta_2&&&&&(2)\\ \cos(\theta_1+\theta_2 )=\cos\theta_1\cos\theta_2-\sin\theta_1\sin\theta_2&&&&&(3)\\ \cos(\theta_1-\theta_2)=\cos\theta_1\cos\theta_2+\sin\theta_1\sin\theta_2&&&&& (4)\\\end{cases} sin ( i1+i2)=sini1cosi2+cosi1sini2sin ( i1i2)=sini1cosi2cosi1sini2cos ( i1+i2)=cosi1cosi2sini1sini2cos ( i1i2)=cosi1cosi2+sini1sini2(1)(2)(3)(4)
Formula (4) − (4)-( 4 ) −Formula (3) (3)( 3 )
sin ⁡ θ 1 sin ⁡ θ 2 = 1 2 [ cos ⁡ ( θ 1 − θ 2 ) − cos ⁡ ( θ 1 + θ 2 ) ] \sin\theta_1\sin\theta_2=\frac{1} {2}[\cos(\theta_1-\theta_2)-\cos(\theta_1+\theta_2)]sini1sini2=21[ cos ( i1i2)cos ( i1+i2)]
Formula(4) + (4)+( 4 ) + formula(3) (3)( 3 )
cos ⁡ θ 1 cos ⁡ θ 2 = 1 2 [ cos ⁡ ( θ 1 + θ 2 ) + cos ⁡ ( θ 1 − θ 2 ) ] \cos\theta_1\cos\theta_2=\frac{1} {2}[\cos(\theta_1+\theta_2)+\cos(\theta_1-\theta_2)]cosi1cosi2=21[ cos ( i1+i2)+cos ( i1i2)]
Formula(1) + (1)+( 1 ) + formula(2) (2)( 2 )
sin ⁡ θ 1 cos ⁡ θ 2 = 1 2 [ sin ⁡ ( θ 1 + θ 2 ) + sin ⁡ ( θ 1 − θ 2 ) ] \sin\theta_1\cos\theta_2=\frac{1} {2}[\sin(\theta_1+\theta_2)+\sin(\theta_1-\theta_2)]sini1cosi2=21[ sin ( i1+i2)+sin ( i1i2)]
Formula(1) − (1)-( 1 ) −Formula (2) (2)( 2 )
cos ⁡ θ 1 sin ⁡ θ 2 = 1 2 [ sin ⁡ ( θ 1 + θ 2 ) − sin ⁡ ( θ 1 − θ 2 ) ] \cos\theta_1\sin\theta_2=\frac{1} {2}[\sin(\theta_1+\theta_2)-\sin(\theta_1-\theta_2)]cosi1sini2=21[ sin ( i1+i2)sin ( i1i2)]

sum-difference product formula

  • sin ⁡ θ 1 + sin ⁡ θ 2 = 2 sin ⁡ ( θ 1 + θ 2 2 ) cos ⁡ ( θ 1 − θ 2 2 ) \sin\theta_1+\sin\theta_2=2\sin(\frac{\theta_1+\ theta_2}{2})\cos(\frac{\theta_1-\theta_2}{2})sini1+sini2=2sin(2i1+i2)cos(2i1i2)
  • sin ⁡ θ 1 − sin ⁡ θ 2 = 2 cos ⁡ ( θ 1 + θ 2 2 ) sin ⁡ ( θ 1 − θ 2 2 ) \sin\theta_1-\sin\theta_2=2\cos(\frac{\theta_1+ \theta_2}{2})\sin(\frac{\theta_1-\theta_2}{2})sini1sini2=2cos(2i1+i2)sin(2i1i2)
  • cos ⁡ θ 1 + cos ⁡ θ 2 = 2 cos ⁡ ( θ 1 + θ 2 2 ) cos ⁡ ( θ 1 − θ 2 2 ) \cos\theta_1+\cos\theta_2=2\cos(\frac{\theta_1+\ theta_2}{2})\cos(\frac{\theta_1-\theta_2}{2})cosi1+cosi2=2cos(2i1+i2)cos(2i1i2)
  • cos ⁡ θ 1 − cos ⁡ θ 2 = − 2 sin ⁡ ( θ 1 + θ 2 2 ) sin ⁡ ( θ 1 − θ 2 2 ) \cos\theta_1-\cos\theta_2=-2\sin(\frac{ \theta_1+\theta_2}{2})\sin(\frac{\theta_1-\theta_2}{2})cosi1cosi2=2sin(2i1+i2)sin(2i1i2)
proving process

∵ \because
θ 1 = θ 1 + θ 2 2 + θ 1 − θ 2 2 , θ 2 = θ 1 + θ 2 2 − θ 1 − θ 2 2 \theta_1=\frac{\theta_1+\theta_2}{2}+\ frac{\theta_1-\theta_2}{2},\\theta_2=\frac{\theta_1+\theta_2}{2}-\frac{\theta_1-\theta_2}{2}i1=2i1+i2+2i1i2, i2=2i1+i22i1i2
∴ \therefore
sin ⁡ θ 1 = sin ⁡ ( θ 1 + θ 2 2 ) cos ⁡ ( θ 1 − θ 2 2 ) + cos ⁡ ( θ 1 + θ 2 2 ) sin ⁡ ( θ 1 − θ 2 2 ) sin ⁡ θ 2 = sin ⁡ ( θ 1 + θ 2 2 ) cos ⁡ ( θ 1 − θ 2 2 ) − cos ⁡ ( θ 1 + θ 2 2 ) sin ⁡ ( θ 1 − θ 2 2 ) cos ⁡ θ 1 = cos ⁡ ( θ 1 + θ 2 2 ) cos ⁡ ( θ 1 − θ 2 2 ) − sin ⁡ ( θ 1 + θ 2 2 ) sin ⁡ ( θ 1 − θ 2 2 ) cos ⁡ θ 2 = cos ⁡ ( θ 1 + θ 2 2 ) cos ⁡ ( θ 1 − θ 2 2 ) + sin ⁡ ( θ 1 + θ 2 2 ) sin ⁡ ( θ 1 − θ 2 2 )\begin{aligned}&\sin\theta_1=\sin(\frac{\theta_1+\theta_2}{2})\cos(\frac{\theta_1-\theta_2}{2})+\cos(\frac{\theta_1+\theta_2}{2})\sin(\frac{\theta_1-\theta_2}{2})\\&\sin\theta_2=\sin(\frac{\theta_1+\theta_2}{2})\cos(\frac{\theta_1-\theta_2}{2})-\cos(\frac{\theta_1+\theta_2}{2})\sin(\frac{\theta_1-\theta_2}{2})\\&\cos\theta_1=\cos(\frac{\theta_1+\theta_2}{2})\cos(\frac{\theta_1-\theta_2}{2})-\sin(\frac{\theta_1+\theta_2}{2})\sin(\frac{\theta_1-\theta_2}{2})\\&\cos\theta_2=\cos(\frac{\theta_1+\theta_2}{2})\cos(\frac{\theta_1-\theta_2}{2})+\sin(\frac{\theta_1+\theta_2}{2})\sin(\frac{\theta_1-\theta_2}{2})\end{aligned}sini1=sin(2i1+i2)cos(2i1i2)+cos(2i1+i2)sin(2i1i2)sini2=sin(2i1+i2)cos(2i1i2)cos(2i1+i2)sin(2i1i2)cosi1=cos(2i1+i2)cos(2i1i2)sin(2i1+i2)sin(2i1i2)cosi2=cos(2i1+i2)cos(2i1i2)+sin(2i1+i2)sin(2i1i2)
∴ \therefore
sin ⁡ θ 1 + sin ⁡ θ 2 = 2 sin ⁡ ( θ 1 + θ 2 2 ) cos ⁡ ( θ 1 − θ 2 2 ) \sin\theta_1+\sin\theta_2=2\sin(\frac{\theta_1+ \theta_2}{2})\cos(\frac{\theta_1-\theta_2}{2})sini1+sini2=2sin(2i1+i2)cos(2i1i2)
Others can be proved in the same way

Auxiliary angle formula

a sin ⁡ θ + b cos ⁡ θ = a 2 + b 2 sin ⁡ ( θ + φ ) a\sin\theta+b\cos\theta=\sqrt{a^2+b^2}\sin(\theta+ \varphi)asini+bcosi=a2+b2 sin ( i+φ )
and
sin ⁡ ( φ ) = ba 2 + b 2 , cos ⁡ ( φ ) = aa 2 + b 2 \sin(\varphi)=\frac{b}{\sqrt{a^2+b^2} },~\cos(\varphi)=\frac{a}{\sqrt{a^2+b^2}}sin ( φ )=a2+b2 b, cos ( φ )=a2+b2 a

reference

[1] Wikipedia Trigonometric Functions https://zh.wikipedia.org/wiki/Trigonometric Functions
[2] Baidu Encyclopedia Trigonometric Function Formulas https://baike.baidu.com/item/Trigonometric Function Formulas/4374733

Guess you like

Origin blog.csdn.net/qq_52554169/article/details/132295746