Detailed explanation of inverse trigonometric functions

definition

name symbol definition Domain range
arcsine y = arcsin ⁡ x y=\arcsin x y=arcsinx x = sin ⁡ yx=\sin yx=siny [ − 1 , 1 ] [-1,1] [1,1] [ − π 2 , π 2 ] [-\frac{\pi}{2},\frac{\pi}{2}][2p,2p]
Arc cosine y = arccos ⁡ xy=\arccos xy=arccosx x = cos ⁡ yx=\cos yx=cosy [ − 1 , 1 ] [-1,1][1,1] [ 0 , π ] [0,\pi][0,p ]
arctangent y = arctan ⁡ xy=\arctan xy=arctanx x = tan ⁡ yx=\tan yx=tany R \mathbb{R} R ( − π 2 , π 2 ) (-\frac{\pi}{2},\frac{\pi}{2})(2p,2p)

arcsine

Function f ( x ) = sin ⁡ xf(x)=\sin xf(x)=sinxx ∈ [ − π 2 , π 2 ] x\in[-\frac{\pi}{2},\frac{\pi}{2}]x[2p,2p] part of the inverse functionf − 1 ( x ) f^{-1}(x)f1 (x)is called the inverse sine function, denotedarcsin ⁡ x \arcsin xarcsinx

Arc cosine

Function f ( x ) = cos ⁡ xf(x)=\cos xf(x)=cosx x ∈ [ 0 , π ] x\in[0,\pi] x[0,π ] part of the inverse functionf − 1 ( x ) f^{-1}(x)f1 (x)is called the inverse cosine function, denotedarccos ⁡ x \arccos xarccosx

arctangent

Function f ( x ) = tan ⁡ xf(x)=\tan xf(x)=tanxx ∈ ( − π 2 , π 2 ) x\in(-\frac{\pi}{2},\frac{\pi}{2})x(2p,2p) part of the inverse functionf − 1 ( x ) f^{-1}(x)f1 (x)is called the arctangent function, denoted asarctan ⁡ x \arctan xarctanx

image

arcsine

y = arcsin ⁡ x y=\arcsin x y=arcsinx
Insert image description here

Arc cosine

y = arccos ⁡ xy=\arccos xy=arccosx
Insert image description here

arctangent

y = arctan ⁡ xy=\arctan xy=arctanx
Insert image description here

identity

remaining angle

y = arcsine ⁡ xy=\arcsine xy=arcsinxy = arccos ⁡ xy=\arccos xy=arccosThe graph of x is easy to see
arcsin ⁡ x + arccos ⁡ x = π 2 \arcsin x+\arccos x=\frac{\pi}{2}arcsinx+arccosx=2p

Negative parameters

  • arcsin ⁡ ( − x ) = − arcsin ⁡ x \arcsin(-x)=-\arcsin x arcsin(x)=arcsinx
  • arccos ⁡ ( − x ) = π − arccos ⁡ x \arccos(-x)=\pi-\arccos x arccos(x)=Piarccosx
  • arctan ⁡ ( − x ) = − arctan ⁡ x \arctan(-x)=-\arctan xarctan ( x )=arctanx

reference

[1] Wikipedia Inverse Trigonometric Functions https://zh.wikipedia.org/wiki/Inverse Trigonometric Functions

Guess you like

Origin blog.csdn.net/qq_52554169/article/details/132295857