Derivation of x to the power of x and advancement of this type of substitution method

1. Derivation of x to the power of x

Problem description: Yes xxx^xxDerivative of x

solve:

y = xxy = x^xy=xx,对两边求自然对数
ln ⁡ y = x ln ⁡ x d ln ⁡ y d x = d ( x ln ⁡ x ) d x d ln ⁡ y d y d y d x = 1 + ln ⁡ x d y d x = ( 1 + ln ⁡ x ) y d y d x = ( 1 + ln ⁡ x ) x x x ˙ = ( 1 + ln ⁡ x ) x x \begin{align} \ln y &= x \ln x \\ \frac{\mathrm{d}\ln y}{\mathrm{d}x} &= \frac{\mathrm{d} ( x \ln x )} {\mathrm{d}x}\\ \frac{\mathrm{d}\ln y}{\mathrm{d}y} \frac{\mathrm{d}y}{\mathrm{d}x} &= 1 + \ln x \\ \frac{\mathrm{d}y}{\mathrm{d}x} & = (1 + \ln x)y \\ \frac{\mathrm{d}y}{\mathrm{d}x} & = (1 + \ln x)x^x \\ \dot x &= (1 + \ln x)x^x \\ \end{align} lnydxdlnydydlnydxdydxdydxdyx˙=xlnx=dxd(xlnx)=1+lnx=(1+lnx)y=(1+lnx)xx=(1+lnx)xx
It can be seen that the derivation of this type of power function requires the construction of a yyy to solve, we will advance

2. Advanced

Warm reminder, this chapter involves a lot of derivation chain rules, so friends who don’t understand this part of the content can go and make up for it first. The content of this section is very useful for friends who want to study high-order sliding mode algorithms. Help, I'm here to research this problem anyway.

Because our mathematics in this chapter is for control services, here we directly choose a simple second-order system
{ x ˙ 1 = x 2 x ˙ 2 = u \begin{align} \begin{cases} \dot x_1 = x_2 \\ \ dot x_2 = u \\ \end{cases} \end{align}{ x˙1=x2x˙2=u
Find the following equation for time ttt derivative, where the functionsign signs i g n is the sign function y
y = ∣ x 1 ∣ λ x 1 2 1 + μ x 1 2 sign ( x 1 ) \begin{align} y = |x_1|^{\frac{\lambda x_1^2} {1+\mu x_1^2}} sign(x_1) \end{align}y=x11 + μ x12λx12sign(x1)
First, solve the problem of the sign function by derivation of both sides at the same time
y ′ = ( ∣ x 1 ∣ λ x 1 2 1 + μ x 1 2 ) ′ sign ( x 1 ) + ( ∣ x 1 ∣ λ x 1 2 1 + μ x 1 2 ) ( sign ( x 1 ) ) ′ = ( ∣ x 1 ∣ λ x 1 2 1 + μ x 1 2 ) ′ sign ( x 1 ) \begin{align} y' = \left(|x_1|^{ \frac{\lambda x_1^2}{1+\mu x_1^2}}\right)' sign(x_1) + \left(|x_1|^{\frac{\lambda x_1^2}{1+\mu x_1^2}}\right)\left(sign(x_1)\right)'=\left(|x_1|^{\frac{\lambda x_1^2}{1+\mu x_1^2}}\right) ' sign(x_1) \end{align}y=(x11 + μ x12λx12)sign(x1)+(x11 + μ x12λx12)(sign(x1))=(x11 + μ x12λx12)sign(x1)
readzz _z is the first part of the above formula, we only need to comparezzz 求导即可
z = ∣ x 1 ∣ λ x 1 2 1 + μ x 1 2 ln ⁡ z = λ x 1 2 1 + μ x 1 2 ln ⁡ ∣ x 1 ∣ d ln ⁡ z d t = d ( λ x 1 2 1 + μ x 1 2 ln ⁡ ∣ x 1 ∣ ) d t d ln ⁡ z d z d z d t = d ( λ x 1 2 1 + μ x 1 2 ) d t ln ⁡ ∣ x 1 ∣ + d ln ⁡ ∣ x 1 ∣ d t λ x 1 2 1 + μ x 1 2 \begin{align} z &= |x_1|^{\frac{\lambda x_1^2}{1+\mu x_1^2}} \\ \ln z & = \frac{\lambda x_1^2}{1+\mu x_1^2} \ln |x_1| \\ \frac{\mathrm{d}\ln z}{\mathrm{d}t} & = \frac{\mathrm{d} \left( \frac{\lambda x_1^2}{1+\mu x_1^2} \ln |x_1| \right)}{\mathrm{d}t} \\ \frac{\mathrm{d}\ln z}{\mathrm{d}z}\frac{\mathrm{d} z}{\mathrm{d}t} &= \frac{\mathrm{d} \left( \frac{\lambda x_1^2}{1+\mu x_1^2} \right)}{\mathrm{d}t} \ln |x_1| + \frac{\mathrm{d} \ln |x_1|}{\mathrm{d}t} \frac{\lambda x_1^2}{1+\mu x_1^2} \\ \end{align} zlnzdtdlnzdzdlnzdtdz=x11 + μ x12λx12=1+μx _12λx12lnx1=dtd(1 + μ x12λx12lnx1)=dtd(1 + μ x12λx12)lnx1+dtdlnx11+μx _12λx12
The right side of the equation is divided into two parts, and the two parts are calculated separately. The first part is
d ( λ x 1 2 1 + μ x 1 2 ) dt = d ( λ x 1 2 1 + μ x 1 2 ) dx 1 2 dx 1 2 dx 1 dx 1 dt = ( λ ( 1 + μ x 1 2 ) − λ x 1 2 μ ( 1 + μ x 1 2 ) 2 ) 2 x 1 x ˙ 1 = 2 λ x 1 x 2 ( 1 + μ x 1 2 ) 2 \begin{align} \frac{\mathrm{d} \left( \frac{\lambda x_1^2}{1+\mu x_1^2} \right)}{\mathrm{d} t} & = \frac{\mathrm{d} \left( \frac{\lambda x_1^2}{1+\mu x_1^2} \right)}{\mathrm{d}x_1^2} \frac{ \mathrm{d} x_1^2}{\mathrm{d}x_1}\frac{\mathrm{d} x_1}{\mathrm{d}t} \\ &= \left( \frac{\lambda(1+ \mu x_1^2) - \lambda x_1^2 \mu}{(1+\mu x_1^2)^2} \right) 2 x_1 \dot x_1 \\ &= \frac{2\lambda x_1 x_2}{ (1+\mu x_1^2)^2} \end{align}dtd(1 + μ x12λx12)=dx12d(1 + μ x12λx12)dx1dx12dtdx1=((1+μx _12)2l ( 1+μx _12)λx12m)2x _1x˙1=(1+μx _12)22 l x1x2
其次是第二部分
d ln ⁡ ∣ x 1 ∣ d t = d ln ⁡ ∣ x 1 ∣ d ∣ x 1 ∣ d ∣ x 1 ∣ d x 1 d x 1 d t = 1 ∣ x 1 ∣ s i g n ( x 1 ) x 2 = x 2 x 1 \begin{align} \frac{\mathrm{d} \ln |x_1|}{\mathrm{d}t} = \frac{\mathrm{d} \ln |x_1|}{\mathrm{d}|x_1|} \frac{\mathrm{d} |x_1|}{\mathrm{d}x_1} \frac{\mathrm{d} x_1}{\mathrm{d}t} = \frac{1}{|x_1|} sign(x_1) x_2 = \frac{x_2}{x_1} \end{align} dtdlnx1=dx1dlnx1dx1dx1dtdx1=x11sign(x1)x2=x1x2
Bring these two parts into the zzThe derivative part of z can be obtained
d ln ⁡ z d z d z d t = d ( λ x 1 2 1 + μ x 1 2 ) d t ln ⁡ ∣ x 1 ∣ + d ln ⁡ ∣ x 1 ∣ d t λ x 1 2 1 + μ x 1 2 1 z d z d t = 2 λ x 1 x 2 ( 1 + μ x 1 2 ) 2 ln ⁡ ∣ x 1 ∣ + λ x 1 x 2 1 + μ x 1 2 1 z d z d t = λ x 1 x 2 1 + μ x 1 2 ( 2 ln ⁡ ∣ x 1 ∣ 1 + μ x 1 2 + 1 ) d z d t = λ x 1 x 2 1 + μ x 1 2 ( 2 ln ⁡ ∣ x 1 ∣ 1 + μ x 1 2 + 1 ) ∣ x 1 ∣ λ x 1 2 1 + μ x 1 2 \begin{align} \frac{\mathrm{d}\ln z}{\mathrm{d}z}\frac{\mathrm{d} z}{\mathrm{d}t} &= \frac{\mathrm{d} \left( \frac{\lambda x_1^2}{1+\mu x_1^2} \right)}{\mathrm{d}t} \ln |x_1| + \frac{\mathrm{d} \ln |x_1|}{\mathrm{d}t} \frac{\lambda x_1^2}{1+\mu x_1^2} \\ \frac{1}{z}\frac{\mathrm{d} z}{\mathrm{d}t} &= \frac{2\lambda x_1 x_2}{(1+\mu x_1^2)^2} \ln|x_1| + \frac{\lambda x_1 x_2}{1+\mu x_1^2} \\ \frac{1}{z}\frac{\mathrm{d} z}{\mathrm{d}t} &= \frac{\lambda x_1 x_2}{1+\mu x_1^2} \left(\frac{2 \ln|x_1|}{1+\mu x_1^2} + 1\right) \\ \frac{\mathrm{d} z}{\mathrm{d}t} &= \frac{\lambda x_1 x_2}{1+\mu x_1^2} \left(\frac{2 \ln|x_1|}{1+\mu x_1^2} + 1\right) |x_1|^{\frac{\lambda x_1^2}{1+\mu x_1^2}} \\ \end{align} dzdlnzdtdzz1dtdzz1dtdzdtdz=dtd(1 + μ x12λx12)lnx1+dtdlnx11+μx _12λx12=(1+μx _12)22 l x1x2lnx1+1+μx _12λx1x2=1+μx _12λx1x2(1+μx _122lnx1+1)=1+μx _12λx1x2(1+μx _122lnx1+1)x11 + μ x12λx12
General zzz brings backy ′ y'y 可得
d y d t = λ x 1 x 2 1 + μ x 1 2 ( 2 ln ⁡ ∣ x 1 ∣ 1 + μ x 1 2 + 1 ) ∣ x 1 ∣ λ x 1 2 1 + μ x 1 2 s i g n ( x 1 ) = λ ∣ x 1 ∣ x 2 1 + μ x 1 2 ( 2 ln ⁡ ∣ x 1 ∣ 1 + μ x 1 2 + 1 ) ∣ x 1 ∣ λ x 1 2 1 + μ x 1 2 \begin{align} \frac{\mathrm{d} y}{\mathrm{d}t} &= \frac{\lambda x_1 x_2}{1+\mu x_1^2} \left(\frac{2 \ln|x_1|}{1+\mu x_1^2} + 1\right) |x_1|^{\frac{\lambda x_1^2}{1+\mu x_1^2}} sign(x_1) \\ &= \frac{\lambda |x_1| x_2}{1+\mu x_1^2} \left(\frac{2 \ln|x_1|}{1+\mu x_1^2} + 1\right) |x_1|^{\frac{\lambda x_1^2}{1+\mu x_1^2}}\\ \end{align} dtdy=1+μx _12λx1x2(1+μx _122lnx1+1)x11 + μ x12λx12sign(x1)=1+μx _12λx1x2(1+μx _122lnx1+1)x11 + μ x12λx12

Guess you like

Origin blog.csdn.net/weixin_43903639/article/details/132918152