Differential operator method for solving special solutions of linear differential equations with constant coefficients

1. Differential operator method to solve special solutions of linear differential equations with constant coefficients

Reference material: The most clearly explained differential operator method on the entire Internet!

1.1 The idea of ​​differential operator method

1.2 f ( x ) = e α x f(x)=e^{\alpha x} f(x)=eαx type

1.3 f ( x ) = sin ⁡ β x f(x)=\sin\beta x f(x)=sinβx f ( x ) = cos ⁡ β x f(x)=\cos\beta x f(x)=cosβ x type

1.4 f ( x ) = e α x sin ⁡ β xf(x)=e^{\alpha x}\sin\beta xf(x)=eαxsinβ xf ( x ) = e α x cos ⁡ β xf(x)=e^{\alpha x}\cos\beta xf(x)=eαxcosβ x type

1.5 f ( x ) = P n ( x ) f(x)=P_n(x) f(x)=Pn( x ) type


1.6 f ( x ) = P n ( x ) e α x f(x)=P_n(x)e^{\alpha x} f(x)=Pn( x ) eαx type

1.7 f ( x ) = P n ( x ) sin ⁡ β x f(x)=P_n(x)\sin\beta x f(x)=Pn(x)sinβx f ( x ) = P n ( x ) cos ⁡ β x f(x)=P_n(x)\cos\beta x f(x)=Pn(x)cosβ x type

1.8 f ( x ) = P n ( x ) e α x sin ⁡ β xf(x)=P_n(x)e^{\alpha x}\sin\beta xf(x)=Pn( x ) eαxsinβ xf ( x ) = P n ( x ) e α x cos ⁡ β xf(x)=P_n(x)e^{\alpha x}\cos\beta xf(x)=Pn( x ) eαxcosβ x type

1.8 Summary


Guess you like

Origin blog.csdn.net/weixin_48524215/article/details/133295281