[Mathematics for postgraduate entrance examination] Linear Algebra Chapter 3 - Vector | 3) The nature of the rank of vector groups, vector spaces, transition matrices


introduction

Immediately after learning the basic concept of vector group rank in the previous article, continue to learn the content of vectors.


3. Vector group equivalence, maximum linearly independent group and rank of vector group

3.2 Properties of rank of vector group

Property 1 (three ranks are equal) —— Let A = ( β 1 , β 2 , … , β n ) = ( α 1 , α 2 , … , α n ) T \pmb{A=(\beta_1,\beta_2, \dots,\beta_n)=(\alpha_1,\alpha_2,\dots,\alpha_n)^T}A=( b1,b2,,bn)=( a1,a2,,an)T,among them1 , α 2 , … , α n \pmb{\alpha_1,\alpha_2,\dots,\alpha_n}a1,a2,,anβ 1 , β 2 , … , β n \pmb{\beta_1,\beta_2,\dots,\beta_n}b1,b2,,bnRespectively matrix AAThe row vector group and column vector group of A , then the matrixAAChichi A , AAThe rank of the row vector group of A , AASets of column vectors of A are of equal rank.

Property 2 —— Suppose A : α 1 , α 2 , … , α n A:\pmb{\alpha_1,\alpha_2,\dots,\alpha_n}A:a1,a2,,anB : β 1 , β 2 , … , β n B:\pmb{\beta_1,\beta_2,\dots,\beta_n}B:b1,b2,,bnare two vector groups with the same dimension, if the vector group AAA can be composed of vector groupBBB linear representation, then the vector groupAAThe rank of A does not exceed the vector groupBBB 's rank.

Property 3 - The ranks of equivalent vector groups are equal, and vice versa.

1. Let vector group A : α 1 , α 2 , … , α n A:\pmb{\alpha_1,\alpha_2,\dots,\alpha_n}A:a1,a2,,anB : β 1 , β 2 , … , β n B:\pmb{\beta_1,\beta_2,\dots,\beta_n}B:b1,b2,,bnThe ranks of are equal, and the vector group AAA can be composed of vector groupBBB linear representation, then the vector groupAAA with vector groupBBB is equivalent.
2. Let vector groupA : α 1 , α 2 , … , α n A:\pmb{\alpha_1,\alpha_2,\dots,\alpha_n}A:a1,a2,,an可由B : β 1 , β 2 , … , β n B:\pmb{\beta_1,\beta_2,\dots,\beta_n}B:b1,b2,,bnlinear representation, but the vector set AAA is not available from the vector groupBBB linear representation, then the vector groupAAThe rank of A is less than the vector groupBBB. _
3. For two equivalent vector groups, the matrices they form are also equivalent, but not necessarily vice versa.


Four, nnn- dimensional vector space

4.1 Basic concepts

n n n- dimensional vector space- allnThe addition of n- dimensional vectors together with vectors and the multiplication of numbers and vectors is callednnn- dimensional vector space, denoted asR n . \pmb{R}^n.Rn.

Base—— Let R n \pmb{R}^nRn isnnn- dimensional vector space, letα 1 , α 2 , … , α n \pmb{\alpha_1,\alpha_2,\dots,\alpha_n}a1,a2,,anis nn in the vector spacen vectors, if satisfy:
(1)α 1 , α 2 , … , α n \pmb{\alpha_1,\alpha_2,\dots,\alpha_n}a1,a2,,anLinearly independent;
(2) For any β ∈ R n , β \pmb{\beta \in R^n,\beta}bRn,β can be composed of vector groupsα 1 , α 2 , … , α n \pmb{\alpha_1,\alpha_2,\dots,\alpha_n}a1,a2,,anLinear representation,
called α 1 , α 2 , … , α n \pmb{\alpha_1,\alpha_2,\dots,\alpha_n}a1,a2,,anfor nnn- dimensional vector spaceR n R^nRbase of n .
In particular, ifα 1 , α 2 , … , α n \pmb{\alpha_1,\alpha_2,\dots,\alpha_n}a1,a2,,anTwo pairs of orthogonal, and are unit vectors, called orthonormal basis.

The coordinates of the vector under the base - Let α 1 , α 2 , … , α n \pmb{\alpha_1,\alpha_2,\dots,\alpha_n}a1,a2,,anfor R n R^nRThe basis of n ,β ∈ R n \beta \in R^nbRn,若β = k 1 α 1 + k 2 α 2 + ⋯ + kn α n \beta=k_1\alpha_1+k_2\alpha_2+\dots+k_n\alpha_nb=k1a1+k2a2++knan, say ( k 1 , k 2 , … , kn ) (k_1,k_2,\dots,k_n)(k1,k2,,kn) is the vectorβ \betaβ在基α 1 , α 2 , … , α n \pmb{\alpha_1,\alpha_2,\dots,\alpha_n}a1,a2,,ancoordinates below.

Transition matrix - Transform from one set of bases to another set of bases, which can be multiplied by a matrix, which is called a transition matrix.

Some intuition is needed to better understand vector spaces. The first thing to understand is that a matrix represents a transformation.

4.2 Basic properties

Theorem 1 Suppose α 1 , α 2 , … , α n \pmb{\alpha_1,\alpha_2,\dots,\alpha_n}a1,a2,,anfor nnn- dimensional vector spaceR n R^nRThe basis of n ,β ∈ R n \beta \in R^nbRn,令A = ( α 1 , α 2 , … , α n ) A=(\pmb{\alpha_1,\alpha_2,\dots,\alpha_n})A=( a1,a2,,an) , then the vectorβ \betaβ在基α 1 , α 2 , … , α n \pmb{\alpha_1,\alpha_2,\dots,\alpha_n}a1,a2,,anThe coordinates below are X = A − 1 β . \pmb{X=A^{-1}\beta}.X=A1 b.

Theorem 2 —— Suppose α 1 , α 2 , … , α n \pmb{\alpha_1,\alpha_2,\dots,\alpha_n}a1,a2,,anβ 1 , β 2 , … , β n \pmb{\beta_1,\beta_2,\dots,\beta_n}b1,b2,,bnis the vector space R n R^nRTwo bases of n , letA = ( α 1 , α 2 , … , α n ) , B = ( β 1 , β 2 , … , β n ) A=(\pmb{\alpha_1,\alpha_2,\dots ,\alpha_n}),B=(\pmb{\beta_1,\beta_2,\dots,\beta_n})A=( a1,a2,,an),B=( b1,b2,,bn) , then from the basisα 1 , α 2 , … , α n \pmb{\alpha_1,\alpha_2,\dots,\alpha_n}a1,a2,,an到基β 1 , β 2 , … , β n \pmb{\beta_1,\beta_2,\dots,\beta_n}b1,b2,,bnThe transition matrix of is Q = A − 1 B . \pmb{Q=A^{-1}B}.Q=A1B.

Theorem 3 —— From the basis α 1 , α 2 , … , α n \pmb{\alpha_1,\alpha_2,\dots,\alpha_n}a1,a2,,an到基β 1 , β 2 , … , β n \pmb{\beta_1,\beta_2,\dots,\beta_n}b1,b2,,bnThe transition matrix and from the basis β 1 , β 2 , … , β n \pmb{\beta_1,\beta_2,\dots,\beta_n}b1,b2,,bnTo the basis α 1 , α 2 , … , α n \pmb{\alpha_1,\alpha_2,\dots,\alpha_n}a1,a2,,anThe resulting transition matrices are the inverses of each other.


write at the end

This concludes the theoretical part of vectors. The connection among matrix, vector, and equation system will be summarized and issued recently.

Guess you like

Origin blog.csdn.net/Douglassssssss/article/details/132467099