How to sort in python

Python is a powerful programming language that provides various sorting methods to sort data. In this article, we will introduce at least 7 different sorting methods with detailed code examples.

1. Bubble Sort:

Bubble sort is a simple sorting algorithm that sorts by comparing adjacent elements and exchanging their positions. It iterates through the list until no swaps occur.

def bubble_sort(arr):
    n = len(arr)
    for i in range(n-1):
        for j in range(0, n-i-1):
            if arr[j] > arr[j+1]:
                arr[j], arr[j+1] = arr[j+1], arr[j]
    return arr

2. Selection Sort:

Selection sort is a simple sorting algorithm that sorts by finding the smallest element in a list and placing it at the end of the sorted portion.

def selection_sort(arr):
    n = len(arr)
    for i in range(n):
        min_idx = i
        for j in range(i+1, n):
            if arr[j] < arr[min_idx]:
                min_idx = j
        arr[i], arr[min_idx] = arr[min_idx], arr[i]
    return arr

3. Insertion Sort:

Insertion sort is a simple sorting algorithm that sorts by inserting each element in its proper place in the sorted part.

def insertion_sort(arr):
    n = len(arr)
    for i in range(1, n):
        key = arr[i]
        j = i-1
        while j >= 0 and arr[j] > key:
            arr[j+1] = arr[j]
            j -= 1
        arr[j+1] = key
    return arr

4. Quick sort (Quick Sort):

Quicksort is an efficient sorting algorithm that uses a divide-and-conquer method to split a list into smaller sublists, and then recursively sorts the sublists.

def quick_sort(arr):
    if len(arr) <= 1:
        return arr
    pivot = arr[len(arr)//2]
    left = [x for x in arr if x < pivot]
    middle = [x for x in arr if x == pivot]
    right = [x for x in arr if x > pivot]
    return quick_sort(left) + middle + quick_sort(right)

5. Merge Sort (Merge Sort):

Merge sort is an efficient sorting algorithm that uses a divide-and-conquer method to split a list into smaller sublists, then recursively sorts the sublists, and finally merges them into a single sorted list.

def merge_sort(arr):
    if len(arr) <= 1:
        return arr
    mid = len(arr) // 2
    left = arr[:mid]
    right = arr[mid:]
    left = merge_sort(left)
    right = merge_sort(right)
    return merge(left, right)
def merge(left, right):
    result = []
    i = j = 0
    while i < len(left) and j < len(right):
        if left[i] < right[j]:
            result.append(left[i])
            i += 1
        else:
            result.append(right[j])
            j += 1
    result.extend(left[i:])
    result.extend(right[j:])
    return result

6. Heap Sort (Heap Sort):

Heap sort is an efficient sorting algorithm that uses a binary heap data structure for sorting.

def heapify(arr, n, i):
    largest = i
    l = 2 * i + 1
    r = 2 * i + 2
    if l < n and arr[i] < arr[l]:
        largest = l
    if r < n and arr[largest] < arr[r]:
        largest = r
    if largest != i:
        arr[i], arr[largest] = arr[largest], arr[i]
        heapify(arr, n, largest)
def heap_sort(arr):
    n = len(arr)
    for i in range(n//2 - 1, -1, -1):
        heapify(arr, n, i)
    for i in range(n-1, 0, -1):
        arr[i], arr[0] = arr[0], arr[i]
        heapify(arr, i, 0)
    return arr

7. Radix Sort (Radix Sort):

Radix sorting is a non-comparative sorting algorithm that sorts elements according to the number of bits.

def counting_sort(arr, exp):
    n = len(arr)
    output = [0] * n
    count = [0] * 10
    for i in range(n):
        index = arr[i] // exp
        count[index % 10] += 1
    for i in range(1, 10):
        count[i] += count[i-1]
    i = n - 1
    while i >= 0:
        index = arr[i] // exp
        output[count[index % 10] - 1] = arr[i]
        count[index % 10] -= 1
        i -= 1
    for i in range(n):
        arr[i] = output[i]
def radix_sort(arr):
    max_val = max(arr)
    exp = 1
    while max_val // exp > 0:
        counting_sort(arr, exp)
        exp *= 10
    return arr

7. Radix Sort (Radix Sort):

Radix sorting is a non-comparative sorting algorithm that sorts elements according to the number of bits.

def counting_sort(arr, exp):
    n = len(arr)
    output = [0] * n
    count = [0] * 10
    for i in range(n):
        index = arr[i] // exp
        count[index % 10] += 1
    for i in range(1, 10):
        count[i] += count[i-1]
    i = n - 1
    while i >= 0:
        index = arr[i] // exp
        output[count[index % 10] - 1] = arr[i]
        count[index % 10] -= 1
        i -= 1
    for i in range(n):
        arr[i] = output[i]
def radix_sort(arr):
    max_val = max(arr)
    exp = 1
    while max_val // exp > 0:
        counting_sort(arr, exp)
        exp *= 10
    return arr

Here are detailed code samples for 7 different sorting methods. According to different data sets and performance requirements, choosing a suitable sorting algorithm can improve the efficiency and performance of the code

The above is the detailed content of how python sorts

Guess you like

Origin blog.csdn.net/lmrylll/article/details/132564090
Recommended