Statistical Dynamics Notes (1) Transformation of Random Signals in Dynamic Systems in the Time Domain (for personal use)

1. Representation of system work quality and some statistical concepts

Let the input of a dynamic system be u ( t ) u(t)u ( t ) , the output isx ( t ) x(t)x ( t ) , then the dynamic error ise ( t ) = u ( t ) − x ( t ) e(t) = u(t) - x(t)e(t)=u(t)x ( t ) . When inputu ( t ) u(t)When u ( t ) is a random signal, e ( t ) e(t)e ( t ) is the random error.

Generally, under the effect of random input signals, the working quality of the system can be expressed by the random mean square error :
e 2 ‾ ( t ) = lim ⁡ T → ∞ 1 2 T ∫ − TT e 2 ( t ) dt (1 ) \overline{e^2} (t) = \lim _{T \rightarrow \infty} \frac{1}{2T} \int_{-T} ^T e^2 (t) {\rm d} t \tag{1}e2(t)=Tlim2T _1TTe2(t)dt(1)

Next, some basic concepts of statistics are introduced.
(1) Probability distribution function F ( x ) F(x)F ( x ) . The probability distribution function refers to the random variableXXX does not exceed a certain valuexxx(即 X < x X < x X<x ):
F ( x ) = P ( X < x ) F(x) = P (X < x)F(x)=P(X<x ) (2)Probability density distribution functionf ( x ) f(x)f ( x ) . It can be simply and roughly understood as "random variableXXX is equal to some valuexxThe probability of x ", or mathematically understood as "the probability distribution functionF ( x ) F(x)F(x)的导数”即可:
f ( x ) = d F ( x ) d x = lim ⁡ Δ → 0 P ( x ≤ X ≤ x + Δ x ) Δ x = lim ⁡ Δ → 0 F ( x + Δ x ) − F ( x ) Δ x f(x) = \frac{ {\rm d} F(x)}{ {\rm d} x} = \lim_{\Delta \rightarrow 0} \frac{ P \left( x \leq X \leq x + \Delta x\right)}{\Delta x} = \lim_{\Delta \rightarrow 0} \frac{F \left( x + \Delta x \right) - F(x)}{\Delta x} f(x)=dxdF(x)=Δ0limΔx _P(xXx+Δ x )=Δ0limΔx _F(x+Δ x )F(x)This leads to
F ( x ) = ∫ ∞ xf ( x ) dx F(x) = \int _\infty ^xf(x) {\rm d} xF(x)=xf ( x ) d x random variableXXThe mathematical expectation of X
: x ~ = M [ X ] = ∫ − ∞ ∞ xf ( x ) dx \tilde x = M \left[ X \right] = \int _{-\infty} ^\infty xf(x) {\rm d} xx~=M[X]=x f ( x ) d x random variableXXmmof Xm – 阶矩:
x ~ m = ∫ − ∞ ∞ x m f ( x ) d x \tilde x^m = \int _{-\infty} ^\infty x^m f(x) {\rm d} x x~m=xm f(x)dxrandom variableXXmmof Xm – 阶中心矩:
M [ ( X − x ~ ) m ] = ∫ − ∞ ∞ ( X − x ~ ) m f ( x ) d x M \left[ \left( X - \tilde x \right)^m \right] = \int _{-\infty} ^\infty \left( X - \tilde x \right)^m f(x) {\rm d} x M[(Xx~)m]=(Xx~)mf ( x ) d x variance (in fact, second-order central moment):
M [ ( X − x ~ ) 2 ] = ∫ − ∞ ∞ ( X − x ~ ) 2 f ( x ) dx M \left[ \left( X - \tilde x \right)^2 \right] = \int _{-\infty} ^\infty \left( X - \tilde x \right)^2 f(x) {\rm d} xM[(Xx~)2]=(Xx~)2f ( x ) d x When considering time, the mean of the sample can be equated to the mathematical expectation:
mx ( t ) = x ~ ( t ) = M [ X ( t ) ] = ∫ − ∞ ∞ xf ( x , t ) dx , D x ( t ) = D [ X ( t ) ] = ∫ − ∞ ∞ [ X ( t ) − mx ( t ) ] 2 f ( x , t ) dx m_x (t) = \tilde x(t) = M \left[ X(t) \right] = \int _{-\infty} ^\infty xf(x, t) {\rm d} x, \\ D_x (t) = D \left[ X(t ) \right] = \int _{-\infty} ^\infty \left[ X(t) - m_x (t) \right]^2 f(x, t) {\rm d} xmx(t)=x~(t)=M[X(t)]=xf(x,t)dx,Dx(t)=D[X(t)]=[X(t)mx(t)]2f(x,t ) d x and for different timet 1 , t 2 t_1, t_2t1,t2For the random process of , we can also have mathematical expectations:
M [ X ( t 1 ) X ( t 2 ) ] = ∫ − ∞ ∞ ∫ − ∞ ∞ x 1 x 2 f ( x 1 , t 1 , x 2 , t 2 ) dx 1 dx 2 = R ( t 1 , t 2 ) M \left[ X\left( t_1 \right) X\left( t_2 \right) \right] = \int_{-\infty} ^\infty \ int_{-\infty} ^\infty x_1 x_2 f \left( x_1, t_1, x_2, t_2 \right) {\rm d} x_1 {\rm d} x_2 = R \left( t_1, t_2 \right)M[X(t1)X(t2)]=x1x2f(x1,t1,x2,t2)dx1dx2=R(t1,t2) is calledthe correlation function. The correlation function characterizesthe connection of random variables between different moments.

For a random variable xxx , its correlation function at different timesR x ( t 1 , t 2 ) R_x \left( t_1, t_2 \right)Rx(t1,t2) calledxxAutocorrelation functionof x . And for two different random variablesx , yx,yx,y , the correlation function R at different timesR xy ( t 1 , t 2 ) R_{xy} \left( t_1, t_2 \right)Rxy(t1,t2) is calledthe cross-correlation function. Obviously, whent 2 = t 1 + τ t_2 = t_1 + \taut2=t1+When τ , the autocorrelation function can also be expressed as
R ( τ ) = M [ X ( t 1 ) X ( t 1 + τ ) ] = ∫ − ∞ ∞ dx 1 ∫ − ∞ ∞ x 1 x 2 f ( x 1 , x 2 , τ ) dx 2 R (\tau) = M \left[ X\left( t_1 \right) X\left( t_1 + \tau \right) \right] = \int_{-\infty} ^\infty {\rm d} x_1 \int_{-\infty} ^\infty x_1 x_2 f \left( x_1, x_2, \tau \right) {\rm d} x_2R ( τ )=M[X(t1)X(t1+) ] _=dx1x1x2f(x1,x2,t )dx2

2. Versatile ergodicity

For a statically determinate process with ergodicity, the following formula holds:
x ~ = x ˉ , x 1 x 2 ~ = x 1 x 2 ‾ \tilde x = \bar x, \quad \widetilde{x_1 x_2} = \ overline{x_1 x_2}x~=xˉ,x1x2 =x1x2At the same time, due to the ergodicity of various states, the mean value of the random variable will not change due to the sampling period:
x ˉ = lim ⁡ T → ∞ 1 2 T ∫ − TT x ( t ) dt = lim ⁡ T → ∞ 1 T ∫ 0 T x ( t ) dt \bar x = \lim _{T \rightarrow \infty} \frac{1}{2T} \int_{-T} ^T x (t) {\rm d} t = \lim _{T \rightarrow \infty} \frac{1}{T} \int_{0} ^T x (t) {\rm d} txˉ=Tlim2T _1TTx(t)dt=TlimT10Tx ( t ) d t so the autocorrelation function is
R ( τ ) = x 1 x 2 ‾ = lim ⁡ T → ∞ 1 T ∫ 0 T x ( t ) x ( t + τ ) dt R (\tau) = \ overline{x_1 x_2} = \lim _{T \rightarrow \infty} \frac{1}{T} \int _0 ^T x(t) x(t + \tau) {\rm d} tR ( τ )=x1x2=TlimT10Tx(t)x(t+τ)dt

3. Properties of correlation functions

Some properties of the correlation function are given below:
R xy ( τ ) = R yx ( − τ ) ; R_{xy} (\tau) = R_{yx} (-\tau);Rxy( t )=Ryx(τ); R y x ( τ ) = lim ⁡ T → ∞ 1 2 T ∫ − T T y ( t ) x ( t + τ ) d t ; R_{yx} (\tau) = \lim _{T \rightarrow \infty} \frac{1}{2T} \int _{-T} ^T y(t) x(t + \tau) {\rm d} t; Ryx( t )=Tlim2T _1TTy(t)x(t+τ)dt; R y x ( − τ ) = lim ⁡ T → ∞ 1 2 T ∫ − T T y ( t ) x ( t − τ ) d t R_{yx} (-\tau) = \lim _{T \rightarrow \infty} \frac{1}{2T} \int _{-T} ^T y(t) x(t - \tau) {\rm d} t Ryx( τ )=Tlim2T _1TTy(t)x(tτ ) d t and if sett 1 = t − τ t_1 = t - \taut1=tτ
R y x ( − τ ) = lim ⁡ T → ∞ 1 2 T ∫ − T T y ( t 1 + τ ) x ( t 1 ) d t = R x y ( τ ) R_{yx} (-\tau) = \lim _{T \rightarrow \infty} \frac{1}{2T} \int _{-T} ^T y(t_1 + \tau) x(t_1) {\rm d} t = R_{xy} (\tau) Ryx( τ )=Tlim2T _1TTy(t1+t ) x ( t1)dt=Rxy( τ )τ = 0 \tau=0t=0时:
R x ( 0 ) = M [ X 2 ( t ) ] = x 2 ‾ = D x R_x (0) = M \left[ X^2 (t) \right] = \overline{x^2} = D_x Rx(0)=M[X2(t)]=x2=Dxτ → ∞ \tau \rightarrow \inftyt时:
R x ( τ → ∞ ) = ( x ~ ) 2 = ( x ˉ ) 2 R_x ( \tau \rightarrow \infty ) = \left( \tilde x \right) ^2 = \left( \bar x \right) ^2 Rx( t)=(x~)2=(xˉ)2 In particular, the correlation function of white noise is:
R x ( τ ) = N 2 δ ( τ ) R_x (\tau) = N^2 \delta (\tau)Rx( t )=N2 d(t)

4. Experimental approach to determine the correlation function

For a statically determinate ergodic system, its correlation function:
R x ( τ ) = X ( t ) X ( t + τ ) ‾ = lim ⁡ T → ∞ 1 T ∫ 0 T x ( t ) x ( t + τ ) dt R_x(\tau) = \overline{X(t) X(t + \tau)} = \lim_{T \rightarrow \infty} \frac{1}{T} \int_0 ^T x(t) x( t + \tau) {\rm d} tRx( t )=X(t)X(t+t )=TlimT10Tx(t)x(t+τ ) d t its estimated value is
R ^ x ( τ ) = 1 T ∫ 0 T x ( t ) x ( t − τ ) dt \hat R_x (\tau) = \frac{1}{T} \int_0 ^ T x(t) x(t - \tau) {\rm d} tR^x( t )=T10Tx(t)x(tτ ) d t In practice, in order to make the estimated value as accurate as possible, the experimental timeTTT as long as possible.

5. Properties of Statically Determinate Random Signals Through Linear Dynamical Systems

Suppose a random signal u ( t ) u(t)u ( t ) , its correlation function isR u ( τ ) R_u (\tau)Ru( τ ) , then it passes through the pulse signalK ( t ) K(t)K ( t ) system, the output is still a random signal:
x ( t ) = ∫ − ∞ ∞ K ( λ ) u ( t − λ ) d λ = K ( λ ) ∗ u ( λ ) (2) x(t) = \int_{-\infty} ^\infty K(\lambda) u(t - \lambda) {\rm d} \lambda = K(\lambda) * u( \lambda) \tag{2 }x(t)=K ( λ ) u ( tl ) d l=K ( λ )u ( λ )( 2 ) is the convolution of the two.
pair outputxxx求数学期望:
M [ x ( t ) ] = ∫ − ∞ ∞ K ( λ ) M [ u ( t − λ ) ] d λ M \left[ x(t) \right] = \int _{-\infty} ^\infty K(\lambda) M \left[ u(t - \lambda) \right] {\rm d} \lambda M[x(t)]=K ( λ ) M[u(tl ) ]d λwhile att + τ t+\taut+τ time:
x ( t + τ ) = ∫ − ∞ ∞ K ( η ) u ( t + τ − η ) d η x(t + \tau) = \int_{-\infty} ^\infty K(\eta ) u(t + \tau - \eta) {\rm d} \etax(t+t )=K ( η ) u ( t+tη ) d η can calculatexxx correlation function:
R x ( τ ) = M [ x ( t ) x ( t + τ ) ] = M [ ∫ − ∞ ∞ K ( λ ) u ( t − λ ) d λ ∫ − ∞ ∞ K ( η ) u ( t + τ − η ) d η ] = ∫ − ∞ ∞ K ( λ ) d λ ∫ − ∞ ∞ M [ u ( t − λ ) u ( t + τ − η ) ] K ( η ) d η \begin{aligned} R_x (\tau) &= M \left[ x(t) x(t + \tau) \right] \\ &= M \left[ \int_{-\infty} ^\infty K( \lambda) u(t - \lambda) {\rm d} \lambda \int_{-\infty} ^\infty K(\eta) u(t + \tau - \eta) {\rm d} \eta \ right] \\ &= \int_{-\infty} ^\infty K(\lambda) {\rm d} \lambda \int_{-\infty} ^\infty M \left[ u(t - \lambda) u (t + \tau - \eta) \right] K(\eta) {\rm d} \eta \end{aligned}Rx( t )=M[x(t)x(t+) ] _=M[K ( λ ) u ( tl ) d lK ( η ) u ( t+th ) d h ]=K ( λ ) d λM[u(tλ ) u ( t+th ) ]K ( η ) d η t ′ = t − λ t' = t - \lambda t=tλ,则
M [ u ( t ′ ) u ( t ′ + λ + τ − η ) ] = R u ( τ + λ − η ) M \left[ u(t') u(t' + \lambda+ \tau - \eta) \right] = R_u (\tau + \lambda - \eta)M[u(t)u(t+l+th ) ]=Ru( t+lη )代入上式有
R x ( τ ) = ∫ − ∞ ∞ K ( λ ) d λ ∫ − ∞ ∞ R u ( τ + λ − η ) K ( η ) d η (3) R_x (\tau) = \int_{-\infty} ^\infty K(\lambda) {\rm d} \lambda \int_{-\infty} ^\infty R_u (\tau + \lambda - \eta) K(\eta) {\ rm d} \eta \tag{3}Rx( t )=K ( λ ) d λRu( t+lh ) K ( h ) d h( 3 ) In addition,xxx sumuuu的互相关函数为(用到式(2)):
R x u ( τ ) = M [ x ( t ) u ( t − τ ) ] = M { [ ∫ − ∞ ∞ K ( λ ) u ( t − λ ) d λ ] u ( t − τ ) } = ∫ − ∞ ∞ K ( λ ) M [ u ( t − τ ) u ( t − λ ) ] d λ \begin{aligned} R_{xu} (\tau) &= M \left[ x(t) u(t - \tau ) \right] \\ &= M \left\{ \left[ \int_{-\infty} ^\infty K(\lambda) u(t - \lambda) {\rm d} \lambda \right] u(t - \tau) \right\} \\ &= \int_{-\infty} ^\infty K(\lambda) M \left[ u(t - \tau) u(t - \lambda) \right] {\rm d} \lambda \end{aligned} Rxu( t )=M[x(t)u(t) ] _=M{ [K ( λ ) u ( tl ) d l ]u(t) } _=K ( λ ) M[u(tt ) u ( tl ) ]dλt − τ = t ′ t - \tau = t'tt=t ,in the case of
R xu ( τ ) = ∫ − ∞ ∞ K ( λ ) M [ u ( t ′ ) u ( t ′ + τ − λ ) ] d λ R_{xu} (\tau) = \int_ {-\infty} ^\infty K(\lambda) M \left[ u(t') u(t' + \tau - \lambda) \right] {\rm d} \lambdaRxu( t )=K ( λ ) M[u(t)u(t+tl ) ]dλ又由于 M [ u ( t ′ ) u ( t ′ + τ − λ ) ] = R u ( τ − λ ) M \left[ u(t') u(t' + \tau - \lambda) \right] = R_u (\tau - \lambda) M[u(t)u(t+tl ) ]=Ru( tλ ),代入上式有
R xu ( τ ) = ∫ − ∞ ∞ K ( λ ) R u ( τ − λ ) d λ (4) R_{xu} (\tau) = \int_{-\infty} ^ \infty K(\lambda) R_u (\tau - \lambda) {\rm d} \lambda \tag{4}Rxu( t )=K ( λ ) Ru( tl ) d l( 4 ) In the actual situation, whenλ < 0 \lambda < 0l<0K ( λ ) ≡ 0 K(\lambda) \equivK ( λ )0,故式(3)(4) can also be written as
R x ( τ ) = ∫ 0 ∞ K ( λ ) d λ ∫ 0 ∞ R u ( τ + λ − η ) K ( η ) d η (3) R_x (\tau) = \int_0 ^\infty K(\lambda) {\rm d} \lambda \int_0 ^\infty R_u (\tau + \lambda - \eta) K(\eta) {\rm d} \ eta \tag{3}Rx( t )=0K ( λ ) d λ0Ru( t+lh ) K ( h ) d h( 3 ) R xu ( τ ) = ∫ 0 ∞ K ( λ ) R u ( τ − λ ) d λ (4) R_{xu} (\tau) = \int_0 ^\infty K(\lambda) R_u (\ tau - \lambda) {\rm d} \lambda \tag{4}Rxu( t )=0K ( λ ) Ru( tl ) d l(4)

6. Calculation of the mean square error of the system output

As mentioned earlier, when τ = 0 \tau=0t=0时:
R x ( 0 ) = M [ X 2 ( t ) ] = x 2 ‾ = D x R_x (0) = M \left[ X^2 (t) \right] = \overline{x^2} = D_x Rx(0)=M[X2(t)]=x2=Dx即语电影方差。上式即(用到式(4)):
R x ( 0 ) = R x ( τ ) ∣ τ = 0 = ∫ 0 ∞ K ( λ ) d λ ∫ 0 ∞ R u ( τ + λ − η ) K ( η ) d η ∣ τ = 0 = ∫ 0 ∞ K ( λ ) d λ ∫ 0 ∞ R u ( λ − η ) K ( η ) d η ⏟ R xu ( λ ) = ∫ 0 ∞ K ( λ ) R xu ( λ ) d λ (5) \begin{aligned} R_x (0) &= R_x (\tau) \big\rvert _{\tau = 0} = \int_0 ^\infty K( \lambda) {\rm d} \lambda \int_0 ^\infty R_u (\tau + \lambda - \eta) K(\eta) {\rm d} \eta \Big\rvert _{\tau = 0} \ \ &= \int_0 ^\infty K(\lambda) {\rm d} \lambda \underbrace{\int_0 ^\infty R_u ( \lambda - \eta) K(\eta) {\rm d} \eta}_ {R_{xu} (\lambda)} \\ &= \int_0 ^\infty K(\lambda) R_{xu} (\lambda) {\rm d} \lambda \tag{5} \end{aligned}Rx(0)=Rx( t ) τ = 0=0K ( λ ) d λ0Ru( t+lh ) K ( h ) d h τ = 0=0K ( λ ) d λRxu( l ) 0Ru( lη ) K ( η ) d η=0K ( λ ) Rxu( λ ) d λ( 5 ) promptD
x = x 2 ‾ = ∫ 0 ∞ K ( λ ) R xu ( λ ) d λ (6) D_x = \overline{x^2} = \int_0 ^\infty K(\lambda) R_{ xu} (\lambda) {\rm d} \lambda \tag{6}Dx=x2=0K ( λ ) Rxu( l ) d l(6)

Guess you like

Origin blog.csdn.net/weixin_58399148/article/details/132432993