Notes on Statistical Dynamics (3) Whole Wave Filter (for personal use)

Whole-wave filters are a class of filters that can integrate statically indeterminate random signals with arbitrary spectral densities. Its input signal is often white noise .

1. Derivation of whole wave filter

From Statistical Dynamics Notes (2) Spectral Density and Dynamic Accuracy of Linear Stochastic System (for self-retention), we can know the system output xxx importuuThe cross-spectrum density between u
: S x ( ω ) = W ( j ω ) W ( − j ω ) S u ( ω ) (1) S_x (\omega) = W(j \omega) W(-j \ omega) S_u (\omega) \tag{1}Sx( oh )=W()W()Su( oh )( 1 ) When the input is white noise,S u ( ω ) = S n ( ω ) = 1 S_u (\omega) = S_n (\omega) = 1Su( oh )=Sn( oh )=1,则
S x ( ω ) = W ( j ω ) W ( − j ω ) (2) S_x (\omega) = W(j \omega) W(-j \omega) \tag{2}Sx( oh )=W()W()( 2 ) In this way, as long as the output terminalxxThe spectral density of x is decomposed into twoconjugatethe transfer functionof the system can be obtained. This step is also known asdecomposition of the spectral density.

Example: The spectral density at the output is
S x ( ω ) = 4 4 ω 2 + 1 = 2 2 j ω + 1 ⋅ 2 2 ( − j ω ) + 1 S_x (\omega) = \frac{4}{4\ omega^2 + 1} = \frac{2}{2 j \omega +1} \cdot \frac{2}{2 (- j\omega) + 1 }Sx( oh )=4 o2+14=2 jo+122 ( )+12Then the transfer function of the system is
W ( j ω ) = 2 2 j ω + 1 W(j \omega) = \frac{2}{2 j \omega +1}W()=2 jo+12
W ( s ) = 2 2 s + 1 W({\rm s}) = \frac{2}{2 {\rm s} +1} W(s)=2s+12

2. Variance of a random signal at the output of a linear dynamical system

The definition of variance has been given in formula (5) of Statistical Dynamics Notes (2) Spectral Density and Dynamic Accuracy of Linear Stochastic Systems (for self-retention) :
D x = R x ( 0 ) = 1 2 π ∫ − ∞ ∞ S x ( ω ) d ω D_x = R_x (0) = \frac{1}{2\pi} \int_{-\infty} ^\infty S_x (\omega) {\rm d} \omegaDx=Rx(0)=2 p.m1Sx( ω ) d ω代入式(1)
D x = 1 2 π ∫ − ∞ ∞ W ( j ω ) W ( − j ω ) S u ( ω ) d ω = 1 2 π ∫ − ∞ ∞ ∣ W ( j ω ) ∣ 2 S u ( ω ) d ω (3) D_x = \frac{1}{2\pi} \int_{-\infty} ^\infty W(j \omega) W(-j \omega) S_u (\omega) {\rm d} \omega = \frac{1}{2\pi} \int_{-\infty} ^\infty \big\lvert W(j \omega) \big\rvert^2 S_u ( \omega) {\rm d} \omega \tag{3}Dx=2 p.m1W()W()Su( ω ) d ω=2 p.m1 W() 2Su( ω ) d ω( 3 ) The calculation method of formula (3) has the following set of fixed methods, called "I n I_nIn– Integral法”:
I n = 1 2 π ∫ − ∞ ∞ ∣ G ( j ω ) ∣ 2 ∣ H n ( j ω ) ∣ 2 d ω = 1 2 π ∫ − ∞ ∞ G n ( j ω ) H n ( j ω ) H n ( − j ω ) d ω (4) I_n = \frac{1}{2\pi} \int_{-\infty} ^\infty \frac{ \big\lvert G(j \omega ) \big\rvert^2 }{ \big\lvert H_n(j \omega) \big\rvert^2 } {\rm d} \omega = \frac{1}{2\pi} \int_{-\infty } ^\infty \frac{ G_n (j \omega) }{ H_n(j \omega) H_n(-j \omega) } {\rm d} \omega \tag{4}In=2 p.m1 Hn( ) 2 G() 2dω=2 p.m1Hn()Hn( - )Gn( )dω( 4 ) where
G n ( j ω ) = b 0 ( j ω ) 2 n − 2 + b 1 ( j ω ) 2 n − 4 + ⋯ + bn − 1 , H n ( j ω ) = a 0 ( j ω ) n + a 1 ( j ω ) n − 1 + ⋯ + an (5) G_n (j \omega) = b_0 (j \omega)^{2n-2} + b_1 (j \omega)^{2n- 4} + \cdots + b_{n-1}, \\ H_n (j \omega) = a_0 (j \omega)^{n} + a_1 (j \omega)^{n-1} + \cdots + a_n \member{5}Gn( )=b0( )2 n 2+b1( )2 n 4++bn1,Hn( )=a0( )n+a1( )n1++an( 5 ) There are the following points about formula (4)(5):
(1) If the order of the denominator of the integral formula isnnn , then in the actual system, the order of the numerator will not exceed2 n − 2 2n-22 n2 .
(2) Integral denominatorH n ( j ω ) H n ( − j ω ) H_n(j \omega) H_n(-j \omega)Hn()Hn( ) isω \omegaEven function of ω .
(3) Integral moleculeG n ( j ω ) G_n(j \omega)Gn( ) contains onlyj ω j\omegaEven powersof . If there is an odd power, it can be ignored directly, because the odd power will be equal to zero after integration. (4) H n ( j ω ) H_n(j \omega)
in the denominator of the integral formulaHn( ) should be stable.

Then for I n I_nIn– Integral, which is calculated as follows:
I n = ( − 1 ) n + 1 N n 2 a 0 D n (6) I_n = (-1) ^{n+1} \frac{N_n}{2a_0 D_n} \ tag{6}In=(1)n+12a _0DnNn(6)其中
D n = ∣ a 1 a 0 0 ⋯ 0 a 3 a 2 a 1 ⋯ 0 a 5 a 4 a 3 ⋯ 0 ⋮ ⋮ ⋮ ⋱ ⋮ 0 0 0 ⋯ a n ∣ , (7) D_n = \begin{vmatrix} a_1 & a_0 & 0 & \cdots & 0 \\ a_3 & a_2 & a_1 & \cdots & 0 \\ a_5 & a_4 & a_3 & \cdots & 0 \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & 0 & \cdots & a_n \end{vmatrix} \tag{7}, Dn= a1a3a50a0a2a400a1a30000an ,(7) N n = ∣ b 0 a 0 0 ⋯ 0 b 1 a 2 a 1 ⋯ 0 b 2 a 4 a 3 ⋯ 0 ⋮ ⋮ ⋮ ⋱ ⋮ b n − 1 0 0 ⋯ a n ∣ (8) N_n = \begin{vmatrix} b_0 & a_0 & 0 & \cdots & 0 \\ b_1 & a_2 & a_1 & \cdots & 0 \\ b_2 & a_4 & a_3 & \cdots & 0 \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ b_{n-1} & 0 & 0 & \cdots & a_n \end{vmatrix} \tag{8} Nn= b0b1b2bn1a0a2a400a1a30000an (8) N n N_n NnJust put D n D_nDnThe first column in is replaced by bi b_ibi

Example: Let the transfer function of the system be
W ( s ) = KT s + 1 W({\rm s}) = \frac{K}{T {\rm s} +1}W(s)=Ts+1KThe spectral density of the input signal is
S u ( ω ) = D u α 2 + ω 2 S_u (\omega) = \frac{D_u}{\alpha^2 + \omega^2}Su( oh )=a2+oh2DuCalculate the mean square error of the system.
First get the transfer function of the systematic error:
Φ e ( s ) = 1 1 + W ( s ) = T s + 1 T s + 1 + K \Phi_e ({\rm s}) = \frac{1}{1 + W( {\rm s})} = \frac{T{\rm s} +1}{T{\rm s} + 1 + K}Phie(s)=1+W(s)1=Ts+1+KTs+1Definition(1)Specify the free-flowing function
S e ( ω ) = ∣ Φ e ( j ω ) ∣ 2 S u ( ω ) = ∣ T ( j ω ) + 1 T ( j ω ) + 1 + K ∣ 2 D u α 2 + ω 2 = D u ( T 2 ω 2 + 1 ) ∣ ( T ( j ω ) + 1 + K ) ( j ω + α ) ∣ 2 = D u ( T 2 ω 2 + 1 ) ∣ T ( j ω ) 2 + ( α T + 1 + K ) j ω + ( 1 + K ) α ∣ 2 \begin{aligned} S_e (\omega) &= \left| \Phi_e(j \omega) \right|^2 S_u(\omega) = \left| \frac{T(j\omega) +1}{T(j\omega) + 1 + K} \right|^2 \frac{D_u}{\alpha^2 + \omega^2} \\ &= \ frac{D_u \left( T^2 \omega^2 + 1\right) }{ \left| \left( T( j\left) + 1 + K \right) \left( j\left + \alpha \right) \right|^2 } \\ &= \frac{D_u \left( T^2 \left ^2 + 1 \right) }{ \left| T(j\omega)^2 + \left( \alpha T + 1 + K \right) j\omega + (1 + K) \alpha \right|^2 } \end{aligned}Se( oh )=Φe( ) _2Su( oh )= T()+1+KT()+1 2a2+oh2Du=(T()+1+K)( +a )2Du(T2 o2+1)=T ( ) _2+( α T+1+K)+(1+K)α2Du(T2 o2+1)The mean square error is (analogous to Statistical Dynamics Notes (2) Spectrum Density and Dynamic Accuracy of Linear Stochastic System (for self-retention) - Equation (5)):
e 2 ‾ = 1 2 π ∫ − ∞ ∞ Se e ( ω ) d ω = D u I 2 \overline{e^2} = \frac{1}{2\pi} \int_{-\infty} ^\infty S_e (\omega) {\rm d} \omega = D_u I_2e2=2 p.m1Se( ω ) d ω=DuI2Then
I 2 = 1 2 π ∫ − ∞ ∞ ( T 2 ω 2 + 1 ) d ω ∣ T ( j ω ) 2 + ( α T + 1 + K ) j ω + ( 1 + K ) α ∣ 2 I_2 = \frac{1}{2\pi} \int_{-\infty} ^\infty \frac{ \left( T^2 \omega^2 + 1 \right) {\rm d} \omega }{ \left| T(j\omega)^2 + \left( \alpha T + 1 +K \right) j\omega + (1 + K) \alpha \right|^2 }I2=2 p.m1T ( ) _2+( α T+1+K)+(1+K)α2(T2 o2+1)dωWe can see
G 2 ( j ω ) = T 2 ⏟ b 0 ω 2 + 1 ⏟ b 1 , G_2 (j\omega) = \underbrace{T^2}_{b_0} \omega^2 + \underbrace{1}_ {b_1},G2( )=b0 T2oh2+b1 1, H 2 ( j ω ) = T ⏟ a 0 ( j ω ) 2 + ( α T + 1 + K ) ⏟ a 1 j ω + ( 1 + K ) α ⏟ a 2 H_2 (j\omega) = \underbrace{T}_{a_0} (j\omega)^2 + \underbrace{\left( \alpha T + 1 +K \right)}_{a_1} j\omega + \underbrace{(1 + K) \alpha}_{a_2} H2( )=a0 T( )2+a1 ( α T+1+K)+a2 (1+K ) aDetermine the equation
D 2 = ∣ a 1 a 0 a 3 a 2 ∣ = ∣ α T + 1 + KT 0 ( 1 + K ) α ∣ = α ( α T + 1 + K ) ( 1 + K ) , . D_2 = \begin {vmatrix} a_1 & a_0 \\ a_3 & a_2 \end{vmatrix} = \begin{vmatrix} \alpha T + 1 +K & T \\ 0 & (1 + K) \alpha \end{vmatrix } = \alpha \left(\alpha T + 1 + K \right) (1 + K),D2= a1a3a0a2 = α T+1+K0T(1+K ) a =a( α T+1+K)(1+K), N 2 = ∣ b 0 a 0 b 1 a 2 ∣ = ∣ T 2 T 1 ( 1 + K ) α ∣ = α T 2 ( 1 + K ) − T N_2 = \begin{vmatrix} b_0 & a_0 \\ b_1 & a_2 \end{vmatrix} = \begin{vmatrix} T^2 & T \\ 1 & (1 + K) \alpha \end{vmatrix} = \alpha T^2 (1 + K) - T N2= b0b1a0a2 = T21T(1+K ) a =α T2(1+K)T
I 2 = ( − 1 ) 2 + 1 N 2 2 a 0 D 2 = − α T 2 ( 1 + K ) − T 2 T α ( α T + 1 + K ) ( 1 + K ) I_2 = (-1) ^{2+1} \frac{N_2}{2a_0 D_2} = - \frac{ \alpha T^2 (1 + K) - T }{2 T \alpha \left( \alpha T + 1 +K \right) (1 + K) } I2=(1)2+12a _0D2N2=2Tα( α T+1+K)(1+K)α T2(1+K)T
e 2 ‾ = D u I 2 = D u [ T − α T 2 ( 1 + K ) ] 2 T α ( α T + 1 + K ) ( 1 + K ) = D u [ 1 − α T ( 1 + K ) ] 2 α ( α T + 1 + K ) ( 1 + K ) \overline{e^2} = D_u I_2 = \frac{ D_u \left[ T - \alpha T^2 (1 + K) \right] }{2 T \alpha \left( \alpha T + 1 +K \right) (1 + K) } = \frac{ D_u \left[ 1 - \alpha T (1 + K) \right] }{2 \alpha \left( \alpha T + 1 +K \right) (1 + K) } e2=DuI2=2Tα( α T+1+K)(1+K)Du[Tα T2(1+K)]=2 a( α T+1+K)(1+K)Du[1αT ( 1 _+K)]Invariant equation
2 ‾ = D u [ 1 − α T ( 1 + K ) ] 2 α ( α T + 1 + K ) ( 1 + K ) \sqrt{\overline{e^2}} = \sqrt { \frac{D_u\left[1-\alphaT(1+K)\right] }{2\alpha\left(\alphaT+1+K\right)(1+K)} }e2 =2 a( α T+1+K)(1+K)Du[1αT ( 1 _+K)]

Guess you like

Origin blog.csdn.net/weixin_58399148/article/details/132497754