LA@2@1@Linear equations and simple matrix equations have solution decision theorems

Matrix Equation Has Solution Judgment Theorem

Judgment of solutions of linear equations

  • System of linear equations A x = b A\bold{x}=\bold{b}Ax=The necessary and sufficient condition for b to have a solutionis its coefficient matrix A and augmented matrix( A , b ) (A,\bold{b})(A,b ) have the same rankR ( A ) = R ( A , b ) R(A)=R(A,\bold{b})R(A)=R(A,b),记 r = R ( A ) = R ( A , b ) r=R(A)=R(A,\bold{b}) r=R(A)=R(A,b):

    • if r = nr=nr=n has a system of equations with a unique solution
    • r < n r<{n} r<n equations have multiple solutions
  • For non-homogeneous linear equations, it is necessary to calculate R ( A ), R ( A , b ) R(A),R(A,\bold{b})R(A),R(A,b)

  • For homogeneous linear equations only need to calculate R ( A ) R(A)R(A)

Specialization: Judgment of Solutions of Homogeneous Linear Equations

  • This is a special case of a system of linear equations that has a solution, and the theorem can be further simplified

  • A system of homogeneous linear equations A x = 0 A\bold{x}=\bold{0}Ax=The case of 0 homogeneous equations can be understood asb \bold{b}The elements in b are all 0

  • It is easy to know that A x = 0 A\bold{x}=\bold{0}Ax=0 alwaysR ( A ) = R ( A ‾ ) = r R(A)=R(\overline{A})=rR(A)=R(A)=r , so the system of homogeneous linear equationsalways has a solution;

    • We only need to compute the coefficient matrix AAA 's rankR ( A ) R(A)R ( A ) to getrrr
    • if r = nr=nr=n then the system of equations has a unique solution, and it isa zero solution
    • r < n r<n r<A system of n equations has a non-zero solution
  • Homogeneous linear equations have a solution determination theorem: homogeneous linear equations A x = 0 A\bold{x}=\bold{0}Ax=The necessary and sufficient condition for 0 to have a solution is R ( A ) ⩽ n R(A)\leqslant{n}R(A)n;

    • The necessary and sufficient condition for zero solution (unique solution) is R ( A ) = n R(A)=nR(A)=n
    • The necessary and sufficient condition for non-zero solutions (multiple solutions) is R ( A ) < n R(A) < nR(A)<n;

Generalization: Matrix equation AX = B AX=BAX=B has a solution

  • BB hereB is a matrix of constant entries (no longer an augmented matrix of coefficient matrices)
  • Theorem: Matrix equation AX = B AX=BAX=The necessary and sufficient condition for B to have a solution is R ( A ) = R ( A , B ) R(A)=R(A,B)R(A)=R(A,B)
    • Note here X , BX,BX,B is not necessarily a vector, it may be a matrix with multiple rows and columns

    • Refer to Tongji Line Code v6@p76@Theorem 6

prove

  • A , X , BA,X,BA,X,B are m × nm\times{n}respectivelym×n, n × l n\times{l} n×l, m × l m\times{l} m×matrix of l

  • Block X and B by column:

    • X X X= ( x 1 , x 2 , ⋯ x l ) (\bold{x}_1,\bold{x}_2,\cdots \bold{x}_l) (x1,x2,xl),
    • B B B= ( b 1 , b 2 , ⋯ b l ) (\bold{b}_1,\bold{b}_2,\cdots \bold{b}_l) (b1,b2,bl)
  • Matrix equation AX = B AX=BAX=B is equivalenttolll vectorequations(system of linear equations)

  • A X = A ( x 1 , x 2 , ⋯ x l ) AX=A(\bold{x}_1,\bold{x}_2,\cdots \bold{x}_l) AX=A(x1,x2,xl)= ( A x 1 , A x 2 , ⋯ A x l ) (A\bold{x}_1,A\bold{x}_2,\cdots A\bold{x}_l) (Ax1,Ax2,Axl)

  • All AX = B AX=BAX=B等价于 ( A x 1 , A x 2 , ⋯ A x l ) (A\bold{x}_1,A\bold{x}_2,\cdots A\bold{x}_l) (Ax1,Ax2,Axl)= ( b 1 , b 2 , ⋯ b l ) (\bold{b}_1,\bold{b}_2,\cdots \bold{b}_l) (b1,b2,bl)

    • 又等价于 A x i = b i ( i = 1 , 2 , ⋯   , l ) A\bold{x}_i=\bold{b}_i(i=1,2,\cdots,l) Axi=bi(i=1,2,,l ) a total oflll linear equations
    • What these linear equations have in common is the same coefficient matrix AAA , which means thellThe ranks of the coefficient matrices of the l linear equations and the original matrix equationsare equal, this conclusion is very important
    • The position number matrix and the constant term matrix are relatively independent
  • R ( A ) = r R(A)=r R(A)=r , andAAThe row echelonof A isA ~ \widetilde{A}A ,则A ~ \widetilde{A}A there is rrr non-zero lines, andA ~ \widetilde{A}A After m − r mrmr line with all zeros

  • ( A , B ) (A,B) (A,B)= ( A , b 1 , b 2 , ⋯ b l ) (A,\bold{b}_1,\bold{b}_2,\cdots \bold{b}_l) (A,b1,b2,bl) ∼ r \overset{r}{\sim}r ( A ~ , b 1 ~ , ⋯   , b l ~ ) {(\widetilde{A},\widetilde{\bold{b}_1},\cdots,\widetilde{\bold{b}_l})} (A ,b1 ,,bl )

    • where A ~ \widetilde{A}A Yes AAThe row echelon formmatrixof A
    • And the vector b 1 ~ , ⋯ , bl ~ \widetilde{\bold{b}_1},\cdots,\widetilde{\bold{b}_l}b1 ,,bl b 1 , b 2 , ⋯ b l \bold{b}_1,\bold{b}_2,\cdots \bold{b}_l b1,b2,bl A ∼ r A ~ A\overset{r}{\sim}\widetilde{A} ArA The result after performing the same row transformation, namely bi ~ \widetilde{\bold{b}_i}bi does not represent a row echelon matrix
  • will be equivalent to the iiThe elementary row transformation of the augmented matrix of i linear equations is a row echelon matrix:( A , bi ) (A,\bold{b}_i)(A,bi) ∼ r \overset{r}{\sim}r ( A ~ , b i ~ ) {(\widetilde{A},\widetilde{\bold{b}_i})} (A ,bi ), ( i = 1 , 2 , ⋯   , l ) (i=1,2,\cdots,l) (i=1,2,,l)

  • A X = B AX=B AX=B有解 ⇔ \Leftrightarrow A x i = b i {A\bold{x}_i=\bold{b}_i} Axi=bi ( i = 1 , 2 , ⋯   , l ) (i=1,2,\cdots,l) (i=1,2,,l ) have a solution

    • ⇔ \Leftrightarrow R ( A , b i ) {R(A,\bold{b}_i)} R(A,bi)= R ( A ) = r R(A)=r R(A)=r, ( i = 1 , 2 , ⋯   , l ) (i=1,2,\cdots,l) (i=1,2,,l)
    • ⇔ \Leftrightarrow b i ~ {\widetilde{\bold{b}_i}} bi After m − r mrmr components (units) are all 0( i = 1 , 2 , ⋯ , l ) (i=1,2,\cdots,l)(i=1,2,,l)
      • Because, if after m − r mrmThere are non-zero elements in r elements, which will causeR ( A , bi ) > R ( A ) R(A,\bold{b}_i)>R(A)R(A,bi)>R(A),导致 A x i = b i {A\bold{x}_i=\bold{b}_i} Axi=biNo solution
      • And its former rrThe value of r elements will not affectR ( A , bi ) {R(A,\bold{b}_i)}R(A,bi)= R ( A ) R(A) We don't care about the establishment of R ( A )
    • ⇔ \Leftrightarrow 矩阵 ( b 1 ~ , ⋯   , b l ~ ) (\widetilde{\bold{b}_1},\cdots,\widetilde{\bold{b}_l}) (b1 ,,bl ) afterm − r mrmR line is all 0;
    • ⇔ \Leftrightarrow row echelon matrixD ~ \widetilde{D}D = ( A ~ , b 1 ~ , ⋯   , b l ~ ) (\widetilde{A},\widetilde{\bold{b}_1},\cdots,\widetilde{\bold{b}_l}) (A ,b1 ,,bl ) afterm − r mrmR line is all 0
    • ⇔ \Leftrightarrow R ( D ~ ) ⩽ m − ( m − r ) = r R(\widetilde{D})\leqslant{m-(m-r)=r} R(D )m(mr)=r , and becauseD ~ \widetilde{D}D contains A ~ \widetilde{A}A , so R ( A ~ ) = r ⩽ R ( D ~ ) R(\widetilde{A})=r\leqslant{R(\widetilde{D})}R(A )=rR(D )
    • ⇔ \Leftrightarrow R ( D ~ ) = r R(\widetilde{D})=r R(D )=r
    • ⇔ R ( A , B ) = R ( A ) \Leftrightarrow{R(A,B)=R(A)} R(A,B)=R(A)
  • Therefore, if AX = B AX=BAX=B有解,则R ( A , B ) = R ( A ) R(A,B)=R(A)R(A,B)=R(A)

inference

  • Young AX = B AX=BAX=B has a solution, thenR ( B ) ⩽ R ( A , B ) = R ( A ) R(B)\leqslant{R(A,B)}=R(A)R(B)R(A,B)=R ( A ) , soR ( B ) ⩽ R ( A ) R(B)\leqslant{R(A)}R(B)R ( A ) , that is,the rank of the constant term matrix is ​​less than the rank of the coefficient matrix
  • against AX = B AX = BAX=Both sides of B take the transpose operation at the same time, there isXTAT = BTX^TA^T=B^TXT AT=BT , in the same wayR ( BT ) ⩽ R ( XT ) R(B^T)\leqslant R(X^T)R(BT)R(XT),即 R ( B ) ⩽ R ( X ) R(B)\leqslant{R(X)} R(B)R(X)
  • Finally, R ( B ) ⩽ min ⁡ ( R ( A ) , R ( X ) ) R(B)\leqslant{\min(R(A),R(X))}R(B)min(R(A),R(X))

Guess you like

Origin blog.csdn.net/xuchaoxin1375/article/details/132307028