Pytorch classification and regression: Ali Tianchi pet age prediction

dog age prediction

Ali Tianchi pet age prediction
https://tianchi.aliyun.com/competition/
has experimented with various methods, but the final result is not particularly good. If you have a better idea after the competition, please advise.

论文Deep expectation of real and apparent age from a single image without facial landmarks

  1. direct regression
  2. segment classification
  3. Finding probability and weighted expectation in sections is actually equivalent to regression.
    The performance of the three methods
    insert image description here

Other methods:

  1. Fitting a distribution, not one-hot
  2. Sort by
  3. data balance

reference:

https://github.com/NICE-FUTURE/predict-gender-and-age-from-camera/tree/master

Classification loss function

1. Multi-category cross-entropy loss function:

torch.nn.CrossEntropyLoss() = log_softmax + nll_loss

Detailed introduction: https://zhuanlan.zhihu.com/p/159477597

2. KLDiv Loss: Distribution difference

Describe the difference in distribution, if the classification target is not one-hot but soft-label, it can be used

https://zhuanlan.zhihu.com/p/340088331

3. facenet triplet loss function

https://github.com/kvsnoufal/Pytorch-FaceNet-DogDataset

timm and torchvision

https://datawhalechina.github.io/thorough-pytorch/index.html
https://datawhalechina.github.io/thorough-pytorch/%E7%AC%AC%E5%85%AD%E7%AB%A0/6.3%20%E6%A8%A1%E5%9E%8B%E5%BE%AE%E8%B0%83-timm.html

torchvision

import torchvision.models as models
resnet18 = models.resnet18()
# resnet18 = models.resnet18(pretrained=False)  等价于与上面的表达式
alexnet = models.alexnet()
vgg16 = models.vgg16()
squeezenet = models.squeezenet1_0()
densenet = models.densenet161()
inception = models.inception_v3()
googlenet = models.googlenet()
shufflenet = models.shufflenet_v2_x1_0()
mobilenet_v2 = models.mobilenet_v2()
mobilenet_v3_large = models.mobilenet_v3_large()
mobilenet_v3_small = models.mobilenet_v3_small()
resnext50_32x4d = models.resnext50_32x4d()
wide_resnet50_2 = models.wide_resnet50_2()
mnasnet = models.mnasnet1_0()

insert image description here

Attempt 1: Classification model, divided into 1-191 categories by age

Main reference: dog breed classification

Use the cross-entropy loss and then train it as a classification model

import glob
import os

import cv2
import numpy as np
import torch
from torch import nn, optim
from torchvision import datasets,transforms
from torch.utils.data import DataLoader

import torch
import torchvision.models as models
from PIL import Image
import torchvision.transforms as transforms

from tqdm import tqdm

from dog_age2 import Net


def VGG16_predict(img_path):
    '''
    Use pre-trained VGG-16 model to obtain index corresponding to
    predicted ImageNet class for image at specified path

    Args:
        img_path: path to an image

    Returns:
        Index corresponding to VGG-16 model's prediction
    '''
    # define VGG16 model
    VGG16 = models.vgg16(pretrained=True)
    # check if CUDA is available
    use_cuda = torch.cuda.is_available()
    # move model to GPU if CUDA is available
    if use_cuda:
        VGG16 = VGG16.cuda()
    ## Load and pre-process an image from the given img_path
    ## Return the *index* of the predicted class for that image
    # Image Resize to 256
    image = Image.open(img_path)
    mean = [0.485, 0.456, 0.406]
    std = [0.229, 0.224, 0.225]
    image_transforms = transforms.Compose([transforms.Resize(256),
                                           transforms.CenterCrop(224),
                                           transforms.ToTensor(),
                                           transforms.Normalize(mean, std)])
    image_tensor = image_transforms(image)
    image_tensor.unsqueeze_(0)
    if use_cuda:
        image_tensor = image_tensor.cuda()
    output = VGG16(image_tensor)
    _, classes = torch.max(output, dim=1)
    return classes.item()  # predicted class index

### returns "True" if a dog is detected in the image stored at img_path
def dog_detector(img_path):
    ## TODO: Complete the function.
    class_dog=VGG16_predict(img_path)
    return class_dog >= 151 and class_dog <=268 # true/false


def resnet50_predict(img_path):
    resnet50 = models.resnet50(pretrained=True)
    use_cuda = torch.cuda.is_available()
    if use_cuda:
        resnet50.cuda()
    image = Image.open(img_path)
    mean=[0.485, 0.456, 0.406]
    std=[0.229, 0.224, 0.225]
    image_transforms = transforms.Compose([transforms.Resize(256),
                                           transforms.CenterCrop(224),
                                           transforms.ToTensor(),
                                           transforms.Normalize(mean,std)])
    image_tensor = image_transforms(image)
    image_tensor.unsqueeze_(0)
    if use_cuda:
        image_tensor=image_tensor.cuda()
    resnet50.eval()
    output = resnet50(image_tensor)
    _,classes = torch.max(output,dim=1)
    return classes.item()
def resnet50_dog_detector(image_path):
    class_idx = resnet50_predict(image_path)
    return class_idx >= 151 and class_idx <=268


def get_train_set_info(dir):
    dog_files_train = glob.glob(dir + '\\*.jpg')
    mean = np.array([0.,0.,0.])
    std = np.array([0.,0.,0.])
    for i in tqdm(range(len(dog_files_train))):
        image=cv2.imread(dog_files_train[i])
        image = cv2.cvtColor(image,cv2.COLOR_BGR2RGB)
        image = image/255.0
        mean[0] += np.mean(image[:,:,0])
        mean[1] += np.mean(image[:,:,1])
        mean[2] += np.mean(image[:,:,2])
        std[0] += np.std(image[:,:,0])
        std[1] += np.std(image[:,:,1])
        std[2] += np.std(image[:,:,2])
    mean = mean/len(dog_files_train)
    std = std/len(dog_files_train)
    return mean,std

from PIL import ImageFile


def train(n_epochs, loaders, model, optimizer, criterion, use_cuda, save_path):
    """returns trained model"""
    # initialize tracker for minimum validation loss
    valid_loss_min = np.Inf

    for epoch in range(1, n_epochs + 1):
        # initialize variables to monitor training and validation loss
        train_loss = 0.0
        valid_loss = 0.0

        ###################
        # train the model #
        ###################
        model.train()
        for batch_idx, (data, target) in enumerate(tqdm(loaders['train'])):
            # move to GPU
            if use_cuda:
                data, target = data.cuda(), target.cuda()
            ## find the loss and update the model parameters accordingly
            ## record the average training loss, using something like
            ## train_loss = train_loss + ((1 / (batch_idx + 1)) * (loss.data - train_loss))
            optimizer.zero_grad()
            output = model(data)
            loss = criterion(output, target)
            loss.backward()
            optimizer.step()
            train_loss = train_loss + ((1 / (batch_idx + 1)) * (loss.data - train_loss))
        ######################
        # validate the model #
        ######################
        correct = 0.
        correct2 = 0
        correct3 = 0
        correct4 = 0
        total = 0.
        model.eval()
        for batch_idx, (data, target) in enumerate(tqdm(loaders['valid'])):
            # move to GPU
            if use_cuda:
                data, target = data.cuda(), target.cuda()
            ## update the average validation loss
            output = model(data)
            loss = criterion(output, target)
            valid_loss = valid_loss + ((1 / (batch_idx + 1)) * (loss.data - valid_loss))

            pred = output.data.max(1, keepdim=True)[1]
            # compare predictions to true label
            correct += np.sum(np.squeeze(pred.eq(target.data.view_as(pred))).cpu().numpy())
            correct2 += np.sum(np.squeeze(np.abs(pred.cpu().numpy() - (target.data.view_as(pred).cpu().numpy())) < 5))
            correct3 += np.sum(np.squeeze(np.abs(pred.cpu().numpy() - (target.data.view_as(pred).cpu().numpy())) < 10))
            correct4 += np.sum(np.squeeze(np.abs(pred.cpu().numpy() - (target.data.view_as(pred).cpu().numpy()))))
            total += data.size(0)

        # print training/validation statistics
        print('Epoch: {} \tTraining Loss: {:.6f} \tValidation Loss: {:.6f}'.format(
            epoch,
            train_loss,
            valid_loss
        ))
        print('Test Accuracy: %2d%% (%2d/%2d)' % (
            100. * correct / total, correct, total))
        print('Test Accuracy: %2d%% (%2d/%2d)' % (
            100. * correct2 / total, correct2, total))
        print('Test Accuracy: %2d%% (%2d/%2d)' % (
            100. * correct3 / total, correct3, total))
        print('Test Accuracy: %2d' % (
                correct4 / total))

        ## TODO: save the model if validation loss has decreased
        if valid_loss_min > valid_loss:
            print('Saving Model...')
            valid_loss_min = valid_loss
            torch.save(model.state_dict(), save_path)
    # return trained model
    return model


if __name__ == "__main__":

    # 1. vgg16 和 resnet50 的识别能力

    dir = r'D:\commit\trainset\trainset'
    # dog_files = glob.glob(dir + '\\*.jpg')
    #
    # dog_files_short = dog_files[:100]
    #
    # dog_percentage_dog = 0
    # dog_percentage_dog2 = 0
    # for i in tqdm(range(100)):
    #     dog_percentage_dog += int(dog_detector(dog_files_short[i]))
    #     dog_percentage_dog2 += int(resnet50_dog_detector(dog_files_short[i]))
    #
    # print(' Dog Percentage in Dog Dataset:{}% {} %'.format( dog_percentage_dog, dog_percentage_dog2)) # 98%, 97%
    # 2. 训练数据的均值和方差
    # mean, std = get_train_set_info(dir)
    # print(mean, std) # [0.595504   0.54956806 0.51172713] [0.2101685  0.21753638 0.22078435]

    # 3. 训练
    mean_train_set = [0.595504,  0.54956806, 0.51172713]
    std_train_set = [0.2101685, 0.21753638, 0.22078435]
    train_dir = r'D:\commit\trainset\trainset2'
    valid_dir = r'D:\commit\valset\valset2'
    test_dir = r'D:\commit\valset\valset2'
    train_transforms = transforms.Compose([transforms.Resize([256, 256]),
                                           transforms.ColorJitter(brightness=0.5, contrast=0.2, saturation=0.2, hue=0.1),
                                           transforms.RandomHorizontalFlip(p=0.5),
                                           transforms.ToTensor(),
                                           transforms.Normalize(mean_train_set, std_train_set)])
    valid_test_transforms = transforms.Compose([transforms.Resize([256, 256]),
                                                #transforms.CenterCrop(256),
                                                transforms.ToTensor(),
                                                transforms.Normalize(mean_train_set, std_train_set)])

    train_dataset = datasets.ImageFolder(train_dir, transform=train_transforms)
    valid_dataset = datasets.ImageFolder(valid_dir, transform=valid_test_transforms)
    #test_dataset = datasets.ImageFolder(test_dir, transform=valid_test_transforms)

    # num_workers=8, pin_memory=True 很重要,训练速度明显
    trainloader = DataLoader(train_dataset, batch_size=32, shuffle=True, num_workers=16, pin_memory=True)
    validloader = DataLoader(valid_dataset, batch_size=32, shuffle=False,num_workers=8, pin_memory=True) 
    #testloader = DataLoader(test_dataset, batch_size=32, shuffle=False)

    loaders_scratch = {
    
    }
    loaders_scratch['train'] = trainloader
    loaders_scratch['valid'] = validloader
    #loaders_scratch['test'] = testloader
    use_cuda = torch.cuda.is_available()

    # instantiate the CNN
    num_class = 191
    # model_scratch = Net(num_class)
    model_scratch = models.resnet50(pretrained=True)
    for param in model_scratch.parameters():
        param.requires_grad = True
    # model_scratch.classifier = nn.Sequential(nn.Linear(1024, 512),
    #                                           nn.ReLU(),
    #                                           nn.Dropout(0.2),
    #                                           nn.Linear(512, 133))
    #
    # model_scratch.load_state_dict(torch.load('model_transfer.pt', map_location='cuda:0'))
    model_scratch.classifier = nn.Sequential(nn.Linear(1024, 512),
                                             nn.ReLU(),
                                             nn.Dropout(0.2),
                                             nn.Linear(512, num_class))
    # move tensors to GPU if CUDA is available
    if use_cuda:
        model_scratch.cuda()
    criterion_scratch = nn.CrossEntropyLoss()
    optimizer_scratch = optim.Adam(model_scratch.parameters(), lr=0.0005)
    print('training !')
    # epoch
    ImageFile.LOAD_TRUNCATED_IMAGES = True
    model_scratch = train(100, loaders_scratch, model_scratch, optimizer_scratch,
                          criterion_scratch, use_cuda, 'model_scratch2.pt')

    # load the model that got the best validation accuracy
    # model_scratch.load_state_dict(torch.load('model_scratch.pt'))

Ineffective.

Attempt 2: Regression Model

model.py

import torch
import torch.nn as nn
from torchinfo import summary

import timm

class base_net(nn.Module):
    def __init__(self, input_features, num_features=64):
        super().__init__()
        self.num_features = num_features
        self.conv = nn.Sequential(
            nn.Conv2d(input_features, num_features, kernel_size=3, padding=3//2),
            #nn.BatchNorm2d(num_features),
            nn.ReLU(inplace=True),
            nn.Conv2d(num_features, num_features*2, kernel_size=3, padding=3//2),
            #nn.BatchNorm2d(num_features*2),
            nn.ReLU(inplace=True),

            nn.Conv2d(num_features*2, num_features, kernel_size=3, padding=3 // 2),
            #nn.BatchNorm2d(num_features),
            nn.ReLU(inplace=True),
            nn.Conv2d(num_features, num_features, kernel_size=3, padding=3 // 2),
            #nn.BatchNorm2d(num_features),
            nn.ReLU(inplace=True),

            nn.Conv2d(num_features, num_features, kernel_size=3, padding=3//2),
        )

    def forward(self, x):
        x = self.conv(x)

        return x
class Predictor(nn.Module):
    """ The header to predict age (regression branch) """

    def __init__(self, num_features, num_classes=1):
        super().__init__()
        self.conv = nn.Sequential(
            nn.Conv2d(num_features, num_features // 4, kernel_size=3, padding=3 // 2),
            nn.BatchNorm2d(num_features // 4),
            nn.ReLU(inplace=True),
            nn.Dropout(0.5),
            nn.Conv2d(num_features // 4, num_features // 8, kernel_size=3, padding=3 // 2),
            nn.BatchNorm2d(num_features // 8),
            nn.ReLU(inplace=True),
            nn.Dropout(0.5),
            nn.Conv2d(num_features // 8, num_features // 16, kernel_size=3, padding=3 // 2),
        )
        self.gap = nn.AdaptiveAvgPool2d(1)
        self.fc = nn.Conv2d(num_features//16, num_classes, kernel_size=1, bias=True)
        #self.dp = nn.Dropout(0.5)
    def forward(self, x):
        x = self.conv(x)
        x = self.gap(x)
        #x = self.dp(x)
        x = self.fc(x)
        x = x.squeeze(-1).squeeze(-1).squeeze(-1)
        return x


class Classifier(nn.Module):
    """ The header to predict gender (classification branch) """

    def __init__(self, num_features, num_classes=100):
        super().__init__()
        self.conv = nn.Sequential(
            nn.Conv2d(num_features, num_features // 4, kernel_size=3, padding=3 // 2),
            nn.BatchNorm2d(num_features // 4),
            nn.ReLU(inplace=True),
            nn.Dropout(0.5),
            nn.Conv2d(num_features // 4, num_features // 8, kernel_size=3, padding=3 // 2),
            nn.BatchNorm2d(num_features // 8),
            nn.ReLU(inplace=True),
            nn.Dropout(0.5),
            nn.Conv2d(num_features // 8, num_features // 16, kernel_size=3, padding=3 // 2),
        )
        self.gap = nn.AdaptiveAvgPool2d(1)
        self.fc = nn.Conv2d(num_features//16, num_classes, kernel_size=1, bias=True)
        self.dp = nn.Dropout(0.4)


    def forward(self, x):
        x = self.conv(x)
        x = self.gap(x)

        x = self.dp(x)
        x = self.fc(x)
        x = x.squeeze(-1).squeeze(-1)
        # x = nn.functional.softmax(x, dim=1)
        return x

#https://github.com/NICE-FUTURE/predict-gender-and-age-from-camera/tree/master
class Model(nn.Module):
    """ A model to predict age and gender """

    def __init__(self, timm_pretrained=True):
        super().__init__()

        self.backbone = timm.create_model("resnet18", pretrained=timm_pretrained)
        self.predictor = Predictor(self.backbone.num_features)
        # self.classifier = Classifier(self.backbone.num_features)


    def forward(self, x):

        x = self.backbone.forward_features(x)  # shape: B, D, H, W
        age = self.predictor(x)
        #gender = self.classifier(x)

        return age

class Model2(nn.Module):
    """ A model to predict age and gender """

    def __init__(self, timm_pretrained=True):
        super().__init__()

        self.backbone = timm.create_model("resnet18", pretrained=timm_pretrained)  #base_net(3, 64) #

        # self.predictor = Predictor(self.backbone.num_features)
        self.classifier = Classifier(self.backbone.num_features) # 100类概率


    def forward(self, x):

        x = self.backbone.forward_features(x)  # shape: B, D, H, W
        #x = self.backbone.forward(x)  # shape: B, D, H, W
        prob = self.classifier(x)
        #gender = self.classifier(x)

        return prob

class Model3(nn.Module):
    """ A model to predict age and gender """

    def __init__(self, timm_pretrained=False):
        super().__init__()

        self.backbone = base_net(3, 64) # timm.create_model("resnet18", pretrained=timm_pretrained)  #

        # self.predictor = Predictor(self.backbone.num_features)
        self.classifier = Classifier(self.backbone.num_features) # 100类概率


    def forward(self, x):

        #x = self.backbone.forward_features(x)  # shape: B, D, H, W
        x = self.backbone.forward(x)  # shape: B, D, H, W
        prob = self.classifier(x)
        #gender = self.classifier(x)

        return prob
if __name__ == "__main__":
    device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
    # device = 'cpu'
    print(device)
    modelviz = Model2().to(device)
    # 打印模型结构
    print(modelviz)
    summary(modelviz, input_size=(2, 3, 256, 256), col_names=["kernel_size", "output_size", "num_params", "mult_adds"])
    # for p in modelviz.parameters():
    #     if p.requires_grad:
    #         print(p.shape)

    input = torch.rand(2, 3, 256, 256).to(device)
    out = modelviz(input)


    from ptflops import get_model_complexity_info

    macs, params = get_model_complexity_info(modelviz, (3, 256, 256), verbose=True, print_per_layer_stat=True)
    print(macs, params)
    params = float(params[:-3])
    macs = float(macs[:-4])

    print(macs * 2, params)  # 8个图像的 FLOPs, 这里的结果 和 其他方法应该一致
    print('out:', out.shape, out)

Train the model:


import glob
import os.path

import cv2
import numpy as np
import rawpy
import torch
import torch.optim as optim
from torch import nn
from torch.utils.data import DataLoader
from torchvision import transforms
from tqdm import tqdm


from datasets import BatchDataset
from model import Model, Model2

import torchvision


if __name__ == "__main__":
    # 1.当前版本信息
    print(torch.__version__)
    print(torch.version.cuda)
    print(torch.backends.cudnn.version())
    print(torch.cuda.get_device_name(0))

    np.random.seed(0)
    torch.manual_seed(0)
    torch.cuda.manual_seed_all(0)
    torch.backends.cudnn.deterministic = True
    torch.backends.cudnn.benchmark = False

    # 2. 设置device信息 和 创建model
    # os.environ['CUDA_VISIBLE_DEVICES'] = '2,3'
    # device = torch.device("cuda:2" if torch.cuda.is_available() else "cpu")
    model = Model()

    gpus = [2,3]
    model = nn.DataParallel(model, device_ids=gpus)
    device = torch.device('cuda:2')
    model = model.cuda(device=gpus[0])

    # 3. dataset 和 data loader, num_workers设置线程数目,pin_memory设置固定内存
    img_size = 256
    transform1 = transforms.Compose([
        transforms.ToTensor(),
        transforms.Resize([img_size, img_size]),
        transforms.RandomHorizontalFlip(p=0.5),
        transforms.ColorJitter(brightness=0.4, contrast=0.2, saturation=0.2, hue=0.1),
        #transforms.RandomPerspective(distortion_scale=0.6, p=1.0),
        transforms.RandomRotation(degrees=(-90, 90)),
    ])
    transform2 = transforms.Compose([
        transforms.ToTensor(),
        transforms.Resize([img_size, img_size]),
    ])
    train_dataset = BatchDataset('train', transform1)
    train_dataset_loader = DataLoader(train_dataset, batch_size=32*4, shuffle=True, num_workers=8, pin_memory=True)

    eval_dataset = BatchDataset('eval', transform2)
    eval_dataset_loader = DataLoader(eval_dataset, batch_size=8, shuffle=True, num_workers=8, pin_memory=True)
    print('load dataset !', len(train_dataset), len(eval_dataset))

    # 4. 损失函数 和  优化器
    age_criterion = nn.MSELoss()
    gender_criterion = nn.CrossEntropyLoss().to(device)
    loss_fn = nn.L1Loss().to(device)
    loss_fn2 = nn.SmoothL1Loss().to(device)

    learning_rate = 1 * 1e-4
    #optimizer = optim.Adam(model.parameters(), lr=learning_rate)
    optimizer = optim.SGD(model.parameters(), lr=learning_rate, momentum=0.9)

    lr_step = 50
    scheduler = torch.optim.lr_scheduler.StepLR(optimizer, lr_step, gamma=0.5)

    # 5. hyper para 设置
    epochs = 800

    save_epoch = 100
    save_model_dir = 'saved_model_age'

    eval_epoch = 100
    save_sample_dir = 'saved_sample_age'
    if not os.path.exists(save_model_dir):
        os.makedirs(save_model_dir)

    # 6. 是否恢复模型
    resume = 1
    last_epoch = 12
    if resume and last_epoch > 1:
        model.load_state_dict(torch.load(
            save_model_dir + '/checkpoint_%04d.pth' % (last_epoch),
            map_location=device))
        print('resume ' , save_model_dir + '/checkpoint_%04d.pth' % (last_epoch))

    # 7. 训练epoch

    f1 = open('traininfo1.txt', 'a')
    f2 = open('evalinfo1.txt', 'a')

    for epoch in range(last_epoch + 1, epochs + 1):
        print('current epoch:', epoch, 'current lr:', optimizer.state_dict()['param_groups'][0]['lr'])
        if epoch < last_epoch + 101:
            save_epoch = 2
            eval_epoch = 2
        else:
            save_epoch = 10
            eval_epoch = 10
        # 8. train loop
        model.train()
        g_loss = []
        g_mae = []
        for data in tqdm(train_dataset_loader):
            image, age, filename = data
            # print(image.shape, age, filename)
            image = image.to(device)
            age = age.to(device)

            pred_age = model(image)
            #print(image.shape, pred_age.shape)
            loss = loss_fn(age, pred_age)
            #loss = age_criterion(age, pred_age)
            #print('dd:', age.detach().cpu().numpy().reshape(-1), pred_age.detach().cpu().numpy().reshape(-1))


            optimizer.zero_grad()
            loss.backward()
            optimizer.step()

            # training result
            g_loss.append(loss.item())
            mae = np.sum(np.abs(age.detach().cpu().numpy().reshape(-1) - pred_age.detach().cpu().numpy().reshape(-1))) / len(age)
            g_mae.append(mae)
            #print( loss.item(), mae)
        #print(len(g_loss), len(g_mae))
        mean_loss = np.mean(np.array(g_loss))
        mean_mae = np.mean(np.array(g_mae))
        print(f'epoch{
      
      epoch:04d} ,train loss: {
      
      mean_loss},train mae: {
      
      mean_mae}')
        f1.write("%d, %.6f, %.4f\n" % (epoch, mean_loss, mean_mae))

        # 9. save model
        if epoch % save_epoch == 0:
            save_model_path = os.path.join(save_model_dir, f'checkpoint_{
      
      epoch:04d}.pth')
            torch.save(model.state_dict(), save_model_path)
        # 10. eval test and save some samples if needed

        if epoch % eval_epoch == 0:
            model.eval()
            maes = []
            with torch.no_grad():

                for data in  tqdm(eval_dataset_loader):
                    image, age, filename = data
                    image = image.to(device)
                    age = age.to(device)

                    out = model(image)
                    mae = loss_fn(out, age)
                    #print( age.detach().cpu().numpy().reshape(-1), out.detach().cpu().numpy().reshape(-1), mae.item())
                    maes.append(mae.item())

                print('eval dataset  mae: ', np.array(maes).mean())
                f2.write("%d, %.6f\n" % (epoch,  np.array(maes).mean()))
        scheduler.step()  # 更新学习率

The effect is not bad, eval mae can reach about 22

Attempt 3: Classification Model

1) In order to deal with data imbalance, what is a set of data for five ages, so that each group takes 50 to get a dataset of one epoch for training 2) The
classification is the probability, in addition to the cross entropy loss, plus an expected loss

not effectively

Attempt 4: KLDivLoss fitting age distribution

In addition to the mae loss of age,
there is also an age distribution loss, which is implemented using KLDivLoss.

For example, the age setting distribution of label =21 is that the age around 21 is not 0, and the others are 0

 prob = model(image)
pred_age = torch.sum(prob * torch.arange(0, 100).reshape(1, -1).to(device), axis=1) * 2 + 1

#print(prob.shape, label.shape)
loss1 = loss_kl(prob.log(), label) # label是一个分布
loss2 = loss_fn(age, pred_age)
loss =   loss1 + loss2 / 10

Attempt 5: First extract the face of the dog, and then train the model

Since direct training is easy to overfit, it is suspected that other features in the picture interfere with the model training, so will the training effect be better after extracting the dog face? How to extract the dog face?

Mainly use the following warehouse
https://github.com/metinozkan/DogAndCat-Face-Opencv

import glob
import os

import cv2

files = glob.glob(r'D:\commit\testset\testset' + '\\*.jpg')

for file in files:
    #file = r'D:\commit\trainset\trainset\02e5218a80b44139ab07c547e1d6c4b9.jpg'
    img=cv2.imread(file)#picture path

    height, width, channel = img.shape
    yuz_cascade=cv2.CascadeClassifier('dog_face.xml')#used haarcascade Classifier
    #kedi_cascade=cv2.CascadeClassifier('haarcascade_frontalcatface.xml path')#used haarcascade Classifier



    griton = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)#Picture conversion gray tone with haarcascade
    it = yuz_cascade.detectMultiScale(griton,1.1,4)#search for the object you want in photos
    #kedi=kedi_cascade.detectMultiScale(griton,1.1,4)
    kopeksay=0#increases the number of found objects
    kedisay=0

    #objects in the rectangle

    wh = 0
    i = 0
    if len(it) == 0:
        x, y, w, h = 0,0,width,height
        print(file, 'not changed ')
    else:
        for (x, y, w, h) in it:
            if w* h > wh:
                wh = w*h
                j = i
            i += 1
        (x, y, w, h) = it[j]

    T = 20
    # save
    img2 = img[ max(y-T, 0): min(y + h+T, height), max(x-T, 0) : min(x + w + T,width)]
    cv2.imwrite(os.path.join(r'D:\commit\testset\testset3', os.path.basename(file)), img2)


    # show
    show_fig = 0
    if show_fig:
        cv2.rectangle(img, (x, y), (x + w, y + h), (0, 255, 0), 3)
        cv2.rectangle(img, (max(x-T, 0), max(y-T, 0)), (min(x + w + T,width) ,  min(y + h+T, height)), (0, 255, 255), 3)
        kopeksay=kopeksay+1
        # for (x, y, w, h) in kedi:
        #     cv2.rectangle(img, (x, y), (x + w,y + h), (0, 10, 0), 3)
        #     kedisay=kedisay+1

        print("kopek->",kopeksay)#number of found objects
        print("kedi-->",kedisay)
        cv2.imshow('yuzler', img)
        cv2.waitKey(0)
        cv2.destroyAllWindows()

Finally, it is mainly optimized according to two and five. forecast

import glob
import os.path

import cv2
import numpy as np
import rawpy
import torch
import torch.optim as optim
from PIL import Image
from torch import nn
from torch.utils.data import DataLoader
from torchvision import transforms
from tqdm import tqdm

from skimage.metrics import peak_signal_noise_ratio as compare_psnr
from skimage.metrics import structural_similarity as compare_ssim

from datasets import BatchDataset, get_images
from model import UNetSeeInDark, Model, Model2

if __name__ == "__main__":
    img_size = 256
    transform2 = transforms.Compose([
        transforms.ToTensor(),
        transforms.Resize([img_size, img_size]),
    ])

    model = Model()
    gpus = [0]
    # model = nn.DataParallel(model, device_ids=gpus)

    device = torch.device('cuda:0')
    print(device)
    m_path = 'saved_model_age/checkpoint_0014.pth'
    #m_path = 'saved_model_res18_reg/checkpoint_0010.pth'
    checkpoint = torch.load(m_path, map_location=device)
    model.load_state_dict({
    
    k.replace('module.', ''): v for k, v in checkpoint.items()})
    #model.load_state_dict(torch.load(m_path, map_location=device))



    model = model.cuda(device=gpus[0])
    model.eval()

    files = glob.glob("testset\\testset\\*.jpg")

    # image_dir = 'valset\\valset'
    # file_txt = 'annotations\\annotations\\val.txt'
    # files = get_images(image_dir, file_txt)
    print(len(files))

    f = open('predict_res50_14.txt', 'w')
    st = ''

    ret = []
    for file in files:
        # file, label = file
        image = Image.open(file).convert('RGB')
        # image = cv2.imread(file, 1).astype(np.float32) / 255
        image = np.array(image)
        input = transform2(image).unsqueeze(0).to(device)
        #print(input.shape)

        out = model(input)
        out = out.detach().cpu().numpy().reshape(-1)

        pred_age = out[0]
        #pred_age = np.sum(out * np.arange(0, 100).reshape(1, -1)) * 2 + 1
        #print(int(label), pred_age, np.abs(pred_age -int(label)))
        #ret.append([int(label), pred_age, pred_age -int(label), np.abs(pred_age -int(label))])
        #print(out)
        st = os.path.basename(file)+'\t%.2f\n' % (pred_age.item())
        f.write(st)

    # ret = np.array(ret)
    # print(ret)
    # print(np.mean(ret, axis=0))
    #np.savetxt('ret54.txt', ret+2, fmt='%.1f', delimiter=' ')

Guess you like

Origin blog.csdn.net/tywwwww/article/details/131960486