AM@space plane beam (plane system) equation pencil of planes

plane beam equation

  • Let the straight line LLGeneral equation for L :

    • Π 1 : A 1 x + B 1 y + C 1 z + D 1 = 0 Π 2 : A 2 x + B 2 y + C 2 z + D 2 = 0 \Pi_1:A_1x+B_1y+C_1z+D_1=0\\ \Pi_2:A_2x+B_2y+C_2z+D_2=0 Pi1:A1x+B1y+C1z+D1=0Pi2:A2x+B2y+C2z+D2=0

    • Among them, A 1 , B 1 , C 1 A_1,B_1,C_1A1,B1,C1, A 2 , B 2 , C 2 A_2,B_2,C_2 A2,B2,C2out of proportion

      • A 1 A 2 = B 1 B 2 = C 1 C 2 = k \frac{A_1}{A_2}=\frac{B_1}{B_2}=\frac{C_1}{C_2}=k A2A1=B2B1=C2C1=k does not hold, (that is, the two lines are not parallel) or
      • There is no k such that A 1 = k A 2 ; B 1 = k B 2 ; C 1 = k C 2 A_1=kA_2;B_1=kB_2;C_1=kC_2A1=to A2;B1=kB2;C1=kC2
  • Adding the general expressions of the two plane equations, we get

    • A 1 x + B 1 y + C 1 z + D 1 + ( A 2 x + B 2 y + C 2 z + D 2 ) = 0 A_1x+B_1y+C_1z+D_1+(A_2x+B_2y+C_2z+D_2)=0 A1x+B1y+C1z+D1+(A2x+B2y+C2z+D2)=0
  • More generally, with Π 2 \Pi_2Pi2Parallel planes can be expressed as Π 2 p : λ ( A 2 x + B 2 y + C 2 z ) + D ′ = 0 {\Pi_2^p}:\lambda(A_2x+B_2y+C_2z)+D'=0Pi2p:l ( A2x+B2y+C2z)+D=0

    • It can also be written as }D')=0Pi2p:l ( A2x+B2y+C2z+l1 D)=0

      • Π 2 p : ( A 2 x + B 2 y + C 2 z + λ − 1 D ′ ) = 0 {\Pi_2^p}:(A_2x+B_2y+C_2z+\lambda^{-1}D')= 0Pi2p:(A2x+B2y+C2z+l1 D)=0 ; whileD'D'D means any constant,λ − 1 D ′ \lambda^{-1}D'l1 D' also means any constant, you can useD' D'D slope− 1 D ′ \lambda^{-1}D'l1 D , so one can write

        • Π 2 p : ( A 2 x + B 2 y + C 2 z + D ′ ) = 0 {\Pi_2^p}:(A_2x+B_2y+C_2z+D')=0 Pi2p:(A2x+B2y+C2z+D)=0
    • Plane Π 2 \Pi_2Pi2A more general form of λ Π 2 : λ ( A 2 x + B 2 y + C 2 z + D ′ ) = 0 \lambda\Pi_2:\lambda(A_2x+B_2y+C_2z+D')=0l P2:l ( A2x+B2y+C2z+D)=0 , this equation andΠ 2 \Pi_2Pi2The planes represented are exactly the same (coincident), which is different from the general parallel but not coincident (because λ Π 2 \lambda\Pi_2l P2Divide both sides by λ \lambdaλ , we getΠ 2 \Pi_2Pi2)

      • This is like 4 x = 3 4x=34x _=3 and8 x = 6 8x=68 x=6 , the two equations have the same solution and can be directly converted to each other

      Π : A 1 x + B 1 y + C 1 z + D 1 + λ ( A 2 x + B 2 y + C 2 z + D 2 ) = 0 \Pi:A_1x+B_1y+C_1z+D_1+\lambda(A_2x+B_2y+C_2z+D_2)=0 Pi:A1x+B1y+C1z+D1+l ( A2x+B2y+C2z+D2)=0

    • where λ \lambdaλ is an arbitrary constant, and the equation is transformed equivalently:

      • Π : ( A 1 + λ A 2 ) x + ( B 1 + λ B 2 ) y + ( C 1 + λ C 2 ) z + ( D 1 + λ D 2 ) = 0 \Pi:(A_1+\lambda{ A_2})x+(B_1+\lambda{B_2})y+(C_1+\lambda{C_2})z+(D_1+\lambda{D_2})=0 \\Pi:(A1+λA2)x+(B1+λB2)y+(C1+λC2)z+(D1+λD2)=0

      • x , y , zx,y,z in this equationx,y,The coefficients of z are not 0 at the same time, because the necessary and sufficient condition for being 0 at the same time is the existence ofλ \lambdaλ such that

        • A 1 + λ A 2 = 0 , A 1 = − λ A 2 B 1 + λ B 2 = 0 , B 1 = − λ B 2 C 1 + λ C 2 = 0 , C 1 = − λ C 2 A_1+\ lambda{A_2}=0,A_1=-\lambda{A_2}\\ B_1+\lambda{B_2}=0,B_1=-\lambda{B_2}\\ C_1+\lambda{C_2}=0,C_1=-\lambda {C_2}A1+λA2=0,A1=λA2B1+λB2=0,B1=λB2C1+λC2=0,C1=λC2

        • And the previous assumption points out that Π 1 , Π 2 \Pi_1,\Pi_2Pi1,Pi2are not parallel, that is, there cannot exist such k = − λ k=-\lambdak=λ , makex, y , zx,y,zx,y,The coefficient of z is 0 at the same time

      • Therefore the equation Π \PiΠ represents a subject affected byλ \lambdaThe plane controlled by λ , below to highlight λ \lambdaThe λ parameter can be recorded asΠ ( λ ) \Pi{(\lambda)}Π ( λ ) , can be calledthe plane family

  • Located on line LLPoints on L simultaneously satisfy Π 1 , Π 2 \Pi_1,\Pi_2Pi1,Pi2The equation of , so it also satisfies the equation Π ( λ ) \Pi(\lambda)P ( l )

    • A 1 x 0 + B 1 y 0 + C 1 z 0 + D 1 = 0 A 2 x 0 + B 2 y 0 + C 2 z 0 + D 2 = 0 A 1 x 0 + B 1 y 0 + C 1 z 0 + D 1 + λ ( A 2 x 0 + B 2 y 0 + C 2 z 0 + D 2 ) = 0 A_1x_0+B_1y_0+C_1z_0+D_1=0\\ A_2x_0+B_2y_0+C_2z_0+D_2=0\\ \\ A_1x_0+B_1y_0+C_1z_0+D_1+\lambda(A_2x_0+B_2y_0+C_2z_0+D_2)=0 A1x0+B1y0+C1z0+D1=0A2x0+B2y0+C2z0+D2=0A1x0+B1y0+C1z0+D1+l ( A2x0+B2y0+C2z0+D2)=0

    • So all points on the line lie on the plane Π\PiΠ , the straight lineLLL lies on the planeΠ\PiP _

    • For different λ \lambdaλ , plane equationΠ ( λ ) \Pi(\lambda)Π ( λ ) means throughLLThe different planes of L (analogous to the pole of the flag is the straight lineLLL , the flag sail represents the (half) plane, with the poleLLL is the axis, rotate up)

    • through straight line LLThe plane of L (exceptΠ 2 \Pi_2Pi2other than ), you can use the equation Π ( λ ) \Pi(\lambda)P ( l ) display

      • Π 2 \Pi_2Pi2cannot be Π ( λ ) \Pi(\lambda)Π ( λ ) means that no matterλ \lambdaWhatever value λ takes, it cannot make Π 2 \Pi_2Pi2Π \PiΠ two equations are equal (or say, makeΠ 2 = Π ( λ ) \Pi_2=\Pi(\lambda)Pi2=Π ( λ ) λ\lambdaλ does not exist)

more general form

  • Π ( μ , λ ) : μ ( A 1 x 0 + B 1 y 0 + C 1 z 0 + D 1 ) + λ ( A 2 x 0 + B 2 y 0 + C 2 z 0 + D 2 ) = \Pi(\mu,\lambda):\mu(A_1x_0+B_1y_0+C_1z_0+D_1)+\lambda(A_2x_0+B_2y_0+C_2z_0+D_2)=0P ( m ,l ):m ( A1x0+B1y0+C1z0+D1)+l ( A2x0+B2y0+C2z0+D2)=0

  • The plane bundle represented by this equation can represent anyL' s plane equation

    • μ ≠ 0 \mu\neq0m=0 ,Π ( μ , λ ) \Pi(\mu,\lambda)P ( m ,λ ) divide both sides of the equation byμ \muμ ,interfaceΠ ( λ ) \Pi(\lambda)The form of Π ( λ )
    • μ = 0 \mu=0m=0 ,input ( μ , λ ) \Pi(\mu,\lambda)P ( m ,λ )Π ( λ ) \Pi(\lambda)Π ( λ ) can express more than one surface, which isΠ 2 \Pi_2Pi2(take μ = 0 , λ = 1 \mu = 0, \lambda = 1m=0,l=1)
  • The equation Π ( μ , λ ) \Pi(\mu,\lambda) can be understood with the help of the normal vector of the planeP ( m ,λ ) construction

    • ( µ A 1 + λ A 2 ) x + ( µ B 1 + λ B 2 ) y + ( µ C 1 + λ C 2 ) z + ( µ D 1 + λ D 2 ) = 0 (\mu A_1+\lambda {A_2})x+(\in B_1+\lambda{B_2})y+(\in C_1+\lambda{C_2})z+(\in D_1+\lambda{D_2})=0(μA1+λA2)x+( μ B1+λB2)y+( μC _1+λC2)z+( μ D1+λD2)=0

    • planeΠ ( μ , λ ) \Pi(\mu,\lambda)P ( m ,λ ) squares( μ A 1 + λ A 2 , μ B 1 + λ B 2 , μ C 1 + λ C 2 ) (\mu A_1+\lambda{A_2},\mu B_1+\lambda{B_2},\ in C_1+\lambda{C_2})(μA1+λA2,μ B1+λB2,μC _1+λC2)

  • For a complete and systematic proof, refer to the relevant literature listed in the subsection at the end of the article

example

  • Find the straight line L 0 L_0L0:
    x + y − z − 1 = 0 x − y + z + 1 = 0 x+y-z-1=0\\ x-y+z+1=0 x+yz1=0xy+z+1=0
    in planeΠ 0 : x + y + z = 0 \Pi_0:x+y+z=0Pi0:x+y+z=Equation LLof the projected straight line on 0L

  • untie

    • Just ask for LLLΠ \PiΠ gets the vertical plane equationΠ 1 \Pi_1Pi1, and then combine Π 0 , Π 1 \Pi_0,\Pi_1Pi0,Pi1Get the general formula equation (group) of the straight line

    • From the general equations of a straight line, the straight line system (bundle) of the straight line can be constructed.

    • Let the straight line L 0 L_0L0Targeted formula ( x + y − z − 1 ) + λ ( x − y + z + 1 ) = 0 (x+yz-1)+\lambda(x-y+z+1)=0(x+yz1)+λ ( xy+z+1)=0 , ie

      • Π 1 : ( 1 + λ ) x + ( 1 − λ ) y + ( − 1 + λ ) z + ( − 1 + λ ) = 0 \Pi_1:(1+\lambda)x+(1-\lambda)y+ (-1+\lambda)z+(-1+\lambda)=0Pi1:(1+l ) x+(1l ) y+(1+λ)z+(1+l )=0

      • From the plane vertical relationship: ( 1 + λ ) ⋅ 1 + ( 1 − λ ) ⋅ 1 + ( − 1 + λ ) ⋅ 1 = 0 (1+\lambda)\cdot1+(1-\lambda)\cdot1+(-1 +\lambda)\cdot1=0(1+l )1+(1l )1+(1+l )1=0 , the solution isλ = − 1 \lambda=-1l=1

      • Thus Π 1 : 2 y − 2 z − 2 = 0 \Pi_1:2y-2z-2=0Pi1:2 y2z _2=0 , iey − z − 1 = 0 yz-1=0yz1=0

    • Thus the straight line LLL

      • y − z − 1 = 0 x + y + z = 0 y-z-1=0\\ x+y+z=0 yz1=0x+y+z=0

refs

Guess you like

Origin blog.csdn.net/xuchaoxin1375/article/details/131316200