Derivative big question practice (2023 college entrance examination real questions)

Known function f ( x ) = a ( ex + a ) − xf(x)=a(e^x+a)-xf(x)=to ( ex+a)x
(1) Discussf ( x ) f(x)The monotonicity of f ( x )
(2) proves that whena > 0 a>0a>When 0 , verify:f ( x ) > 2 ln ⁡ a + 3 2 f(x)>2\ln a+\dfrac 32f(x)>2lna+23

Solution:
\quad(1) f ′ ( x ) = aex − 1 f'(x)=ae^x-1f(x)=aex1

\qquad a > 0 a>0 a>0时,x = − ln ⁡ ax=-\ln ax=lnWhen a f ′ ( x )= 0 f'(x)=0f(x)=0

f ( x ) \qquad f(x) f ( x ) in[ − ln ⁡ a , + ∞ ) [-\ln a,+\infty)[lna,+ ) , monotonically increasing on( − ∞ , − ln ⁡ a ] (-\infty,-\ln a](,lna ] on monotonically decreasing

\qquad a ≤ 0 a\leq 0 a0 ,f ( x ) f(x)f ( x ) at( − ∞ , + ∞ ) (-\infty,+\infty)(,+ ) monotonically decreasing

\quad (2) From (1), x = − ln ⁡ ax=-\ln ax=lna whenf ( x ) f(x)f ( x ) takes the minimum value

\qquadThe title is proof f ( − ln ⁡ a ) > 2 ln ⁡ a + 3 2 f(-\ln a)>2\ln a+\dfrac 32f(lna)>2lna+23

\qquad 1 + a 2 − ln ⁡ a > 2 ln ⁡ a + 3 2 1+a^2-\ln a>2\ln a+\dfrac1+a2lna>2lna+23 a 2 − 3 ln ⁡ a − 1 2 > 0 a^2-3\ln a-\dfrac 12>0 a23lna21>0

\qquadg ( a ) = a 2 − 3 ln ⁡ a − 1 2 g(a)=a^2-3\ln a-\dfracg(a)=a23lna21,则 g ′ ( a ) = 2 a − 3 a g'(a)=2a-\dfrac 3a g(a)=2a _a3

\qquada = 6 2 a=\dfrac{\sqrt 6}{2}a=26 When g ′ ( a ) = 0 g'(a)=0g(a)=0

g ( a ) \qquad g(a) g ( a ) in[ 6 2 , + ∞ ) [\dfrac{\sqrt 6}{2},+\infty)[26 ,+ ) , monotonically increasing at( − ∞ , 6 2 ] (-\infty,\dfrac{\sqrt 6}{2}](,26 ] on monotonically decreasing

\qquad Let g ( a ) ≥ g ( 6 2 ) = 1 − ln ⁡ 3 6 4 > 0 g(a)\geq g(\dfrac{\sqrt 6}{2})=1-\ln\dfrac{3\ sqrt 6}{4}>0g(a)g(26 )=1ln436 >0

\qquada 2 − 3 ln ⁡ a − 1 2 > 0 a^2-3\ln a-\dfrac 12>0a23lna21>0

\qquadFrom this we get f ( x ) > 2 ln ⁡ a + 3 2 f(x)>2\ln a+\dfrac 32f(x)>2lna+23

Guess you like

Origin blog.csdn.net/tanjunming2020/article/details/131264544