pix2pixHD --- model --- generator

Then build the model:
insert image description here
in the creat_model function:

import torch
def create_model(opt):
    if opt.model == 'pix2pixHD':
        from .pix2pixHD_model import Pix2PixHDModel, InferenceModel
        if opt.isTrain:
            model = Pix2PixHDModel()
        else:
            model = InferenceModel()
    else:
    	from .ui_model import UIModel
    	model = UIModel()
    model.initialize(opt)
    if opt.verbose:
        print("model [%s] was created" % (model.name()))

    if opt.isTrain and len(opt.gpu_ids) and not opt.fp16:
        model = torch.nn.DataParallel(model, device_ids=opt.gpu_ids)

    return model

First judge the model:
insert image description here
insert image description here
use the first one when training, otherwise use the second one:
insert image description here
first look at the first one:

import numpy as np
import torch
import os
from torch.autograd import Variable
from util.image_pool import ImagePool
from .base_model import BaseModel
from . import networks
class Pix2PixHDModel(BaseModel):
    def name(self):
        return 'Pix2PixHDModel'
    def init_loss_filter(self, use_gan_feat_loss, use_vgg_loss):
        flags = (True, use_gan_feat_loss, use_vgg_loss, True, True)
        def loss_filter(g_gan, g_gan_feat, g_vgg, d_real, d_fake):
            return [l for (l,f) in zip((g_gan,g_gan_feat,g_vgg,d_real,d_fake),flags) if f]
        return loss_filter
    
    def initialize(self, opt):
        BaseModel.initialize(self, opt)
        if opt.resize_or_crop != 'none' or not opt.isTrain: # when training at full res this causes OOM
            torch.backends.cudnn.benchmark = True
        self.isTrain = opt.isTrain
        self.use_features = opt.instance_feat or opt.label_feat
        self.gen_features = self.use_features and not self.opt.load_features
        input_nc = opt.label_nc if opt.label_nc != 0 else opt.input_nc

        ##### define networks        
        # Generator network
        netG_input_nc = input_nc        
        if not opt.no_instance:
            netG_input_nc += 1
        if self.use_features:
            netG_input_nc += opt.feat_num                  
        self.netG = networks.define_G(netG_input_nc, opt.output_nc, opt.ngf, opt.netG, 
                                      opt.n_downsample_global, opt.n_blocks_global, opt.n_local_enhancers, 
                                      opt.n_blocks_local, opt.norm, gpu_ids=self.gpu_ids)        

        # Discriminator network
        if self.isTrain:
            use_sigmoid = opt.no_lsgan
            netD_input_nc = input_nc + opt.output_nc
            if not opt.no_instance:
                netD_input_nc += 1
            self.netD = networks.define_D(netD_input_nc, opt.ndf, opt.n_layers_D, opt.norm, use_sigmoid, 
                                          opt.num_D, not opt.no_ganFeat_loss, gpu_ids=self.gpu_ids)

        ### Encoder network
        if self.gen_features:          
            self.netE = networks.define_G(opt.output_nc, opt.feat_num, opt.nef, 'encoder', 
                                          opt.n_downsample_E, norm=opt.norm, gpu_ids=self.gpu_ids)  
        if self.opt.verbose:
                print('---------- Networks initialized -------------')

        # load networks
        if not self.isTrain or opt.continue_train or opt.load_pretrain:
            pretrained_path = '' if not self.isTrain else opt.load_pretrain
            self.load_network(self.netG, 'G', opt.which_epoch, pretrained_path)            
            if self.isTrain:
                self.load_network(self.netD, 'D', opt.which_epoch, pretrained_path)  
            if self.gen_features:
                self.load_network(self.netE, 'E', opt.which_epoch, pretrained_path)              

        # set loss functions and optimizers
        if self.isTrain:
            if opt.pool_size > 0 and (len(self.gpu_ids)) > 1:
                raise NotImplementedError("Fake Pool Not Implemented for MultiGPU")
            self.fake_pool = ImagePool(opt.pool_size)
            self.old_lr = opt.lr

            # define loss functions
            self.loss_filter = self.init_loss_filter(not opt.no_ganFeat_loss, not opt.no_vgg_loss)
            
            self.criterionGAN = networks.GANLoss(use_lsgan=not opt.no_lsgan, tensor=self.Tensor)   
            self.criterionFeat = torch.nn.L1Loss()
            if not opt.no_vgg_loss:             
                self.criterionVGG = networks.VGGLoss(self.gpu_ids)
                
        
            # Names so we can breakout loss
            self.loss_names = self.loss_filter('G_GAN','G_GAN_Feat','G_VGG','D_real', 'D_fake')

            # initialize optimizers
            # optimizer G
            if opt.niter_fix_global > 0:                
                import sys
                if sys.version_info >= (3,0):
                    finetune_list = set()
                else:
                    from sets import Set
                    finetune_list = Set()

                params_dict = dict(self.netG.named_parameters())
                params = []
                for key, value in params_dict.items():       
                    if key.startswith('model' + str(opt.n_local_enhancers)):                    
                        params += [value]
                        finetune_list.add(key.split('.')[0])  
                print('------------- Only training the local enhancer network (for %d epochs) ------------' % opt.niter_fix_global)
                print('The layers that are finetuned are ', sorted(finetune_list))                         
            else:
                params = list(self.netG.parameters())
            if self.gen_features:              
                params += list(self.netE.parameters())         
            self.optimizer_G = torch.optim.Adam(params, lr=opt.lr, betas=(opt.beta1, 0.999))                            

            # optimizer D                        
            params = list(self.netD.parameters())    
            self.optimizer_D = torch.optim.Adam(params, lr=opt.lr, betas=(opt.beta1, 0.999))

    def encode_input(self, label_map, inst_map=None, real_image=None, feat_map=None, infer=False):             
        if self.opt.label_nc == 0:
            input_label = label_map.data.cuda()
        else:
            # create one-hot vector for label map 
            size = label_map.size()
            oneHot_size = (size[0], self.opt.label_nc, size[2], size[3])
            input_label = torch.cuda.FloatTensor(torch.Size(oneHot_size)).zero_()
            input_label = input_label.scatter_(1, label_map.data.long().cuda(), 1.0)
            if self.opt.data_type == 16:
                input_label = input_label.half()

        # get edges from instance map
        if not self.opt.no_instance:
            inst_map = inst_map.data.cuda()
            edge_map = self.get_edges(inst_map)
            input_label = torch.cat((input_label, edge_map), dim=1)         
        input_label = Variable(input_label, volatile=infer)

        # real images for training
        if real_image is not None:
            real_image = Variable(real_image.data.cuda())

        # instance map for feature encoding
        if self.use_features:
            # get precomputed feature maps
            if self.opt.load_features:
                feat_map = Variable(feat_map.data.cuda())
            if self.opt.label_feat:
                inst_map = label_map.cuda()

        return input_label, inst_map, real_image, feat_map

    def discriminate(self, input_label, test_image, use_pool=False):
        input_concat = torch.cat((input_label, test_image.detach()), dim=1)
        if use_pool:            
            fake_query = self.fake_pool.query(input_concat)
            return self.netD.forward(fake_query)
        else:
            return self.netD.forward(input_concat)

    def forward(self, label, inst, image, feat, infer=False):
        # Encode Inputs
        input_label, inst_map, real_image, feat_map = self.encode_input(label, inst, image, feat)  

        # Fake Generation
        if self.use_features:
            if not self.opt.load_features:
                feat_map = self.netE.forward(real_image, inst_map)                     
            input_concat = torch.cat((input_label, feat_map), dim=1)                        
        else:
            input_concat = input_label
        fake_image = self.netG.forward(input_concat)

        # Fake Detection and Loss
        pred_fake_pool = self.discriminate(input_label, fake_image, use_pool=True)
        loss_D_fake = self.criterionGAN(pred_fake_pool, False)        

        # Real Detection and Loss        
        pred_real = self.discriminate(input_label, real_image)
        loss_D_real = self.criterionGAN(pred_real, True)

        # GAN loss (Fake Passability Loss)        
        pred_fake = self.netD.forward(torch.cat((input_label, fake_image), dim=1))        
        loss_G_GAN = self.criterionGAN(pred_fake, True)               
        
        # GAN feature matching loss
        loss_G_GAN_Feat = 0
        if not self.opt.no_ganFeat_loss:
            feat_weights = 4.0 / (self.opt.n_layers_D + 1)
            D_weights = 1.0 / self.opt.num_D
            for i in range(self.opt.num_D):
                for j in range(len(pred_fake[i])-1):
                    loss_G_GAN_Feat += D_weights * feat_weights * \
                        self.criterionFeat(pred_fake[i][j], pred_real[i][j].detach()) * self.opt.lambda_feat
                   
        # VGG feature matching loss
        loss_G_VGG = 0
        if not self.opt.no_vgg_loss:
            loss_G_VGG = self.criterionVGG(fake_image, real_image) * self.opt.lambda_feat
        
        # Only return the fake_B image if necessary to save BW
        return [ self.loss_filter( loss_G_GAN, loss_G_GAN_Feat, loss_G_VGG, loss_D_real, loss_D_fake ), None if not infer else fake_image ]

    def inference(self, label, inst, image=None):
        # Encode Inputs        
        image = Variable(image) if image is not None else None
        input_label, inst_map, real_image, _ = self.encode_input(Variable(label), Variable(inst), image, infer=True)

        # Fake Generation
        if self.use_features:
            if self.opt.use_encoded_image:
                # encode the real image to get feature map
                feat_map = self.netE.forward(real_image, inst_map)
            else:
                # sample clusters from precomputed features             
                feat_map = self.sample_features(inst_map)
            input_concat = torch.cat((input_label, feat_map), dim=1)                        
        else:
            input_concat = input_label        
           
        if torch.__version__.startswith('0.4'):
            with torch.no_grad():
                fake_image = self.netG.forward(input_concat)
        else:
            fake_image = self.netG.forward(input_concat)
        return fake_image

    def sample_features(self, inst): 
        # read precomputed feature clusters 
        cluster_path = os.path.join(self.opt.checkpoints_dir, self.opt.name, self.opt.cluster_path)        
        features_clustered = np.load(cluster_path, encoding='latin1').item()

        # randomly sample from the feature clusters
        inst_np = inst.cpu().numpy().astype(int)                                      
        feat_map = self.Tensor(inst.size()[0], self.opt.feat_num, inst.size()[2], inst.size()[3])
        for i in np.unique(inst_np):    
            label = i if i < 1000 else i//1000
            if label in features_clustered:
                feat = features_clustered[label]
                cluster_idx = np.random.randint(0, feat.shape[0]) 
                                            
                idx = (inst == int(i)).nonzero()
                for k in range(self.opt.feat_num):                                    
                    feat_map[idx[:,0], idx[:,1] + k, idx[:,2], idx[:,3]] = feat[cluster_idx, k]
        if self.opt.data_type==16:
            feat_map = feat_map.half()
        return feat_map

    def encode_features(self, image, inst):
        image = Variable(image.cuda(), volatile=True)
        feat_num = self.opt.feat_num
        h, w = inst.size()[2], inst.size()[3]
        block_num = 32
        feat_map = self.netE.forward(image, inst.cuda())
        inst_np = inst.cpu().numpy().astype(int)
        feature = {
    
    }
        for i in range(self.opt.label_nc):
            feature[i] = np.zeros((0, feat_num+1))
        for i in np.unique(inst_np):
            label = i if i < 1000 else i//1000
            idx = (inst == int(i)).nonzero()
            num = idx.size()[0]
            idx = idx[num//2,:]
            val = np.zeros((1, feat_num+1))                        
            for k in range(feat_num):
                val[0, k] = feat_map[idx[0], idx[1] + k, idx[2], idx[3]].data[0]            
            val[0, feat_num] = float(num) / (h * w // block_num)
            feature[label] = np.append(feature[label], val, axis=0)
        return feature

    def get_edges(self, t):
        edge = torch.cuda.ByteTensor(t.size()).zero_()
        edge[:,:,:,1:] = edge[:,:,:,1:] | (t[:,:,:,1:] != t[:,:,:,:-1])
        edge[:,:,:,:-1] = edge[:,:,:,:-1] | (t[:,:,:,1:] != t[:,:,:,:-1])
        edge[:,:,1:,:] = edge[:,:,1:,:] | (t[:,:,1:,:] != t[:,:,:-1,:])
        edge[:,:,:-1,:] = edge[:,:,:-1,:] | (t[:,:,1:,:] != t[:,:,:-1,:])
        if self.opt.data_type==16:
            return edge.half()
        else:
            return edge.float()

    def save(self, which_epoch):
        self.save_network(self.netG, 'G', which_epoch, self.gpu_ids)
        self.save_network(self.netD, 'D', which_epoch, self.gpu_ids)
        if self.gen_features:
            self.save_network(self.netE, 'E', which_epoch, self.gpu_ids)

    def update_fixed_params(self):
        # after fixing the global generator for a number of iterations, also start finetuning it
        params = list(self.netG.parameters())
        if self.gen_features:
            params += list(self.netE.parameters())           
        self.optimizer_G = torch.optim.Adam(params, lr=self.opt.lr, betas=(self.opt.beta1, 0.999))
        if self.opt.verbose:
            print('------------ Now also finetuning global generator -----------')

    def update_learning_rate(self):
        lrd = self.opt.lr / self.opt.niter_decay
        lr = self.old_lr - lrd        
        for param_group in self.optimizer_D.param_groups:
            param_group['lr'] = lr
        for param_group in self.optimizer_G.param_groups:
            param_group['lr'] = lr
        if self.opt.verbose:
            print('update learning rate: %f -> %f' % (self.old_lr, lr))
        self.old_lr = lr

class InferenceModel(Pix2PixHDModel):
    def forward(self, inp):
        label, inst = inp
        return self.inference(label, inst)

        

First look at the forward function: input the label, instance, RGB, and feat into the encoder.
insert image description hereinsert image description here
If the label channel is not 0, perform one-hot encoding on the label. CItyscapes has 35 channels, oneHot_size=(b,35,1024,512). Initialize a tensor whose oneHot_size is all 0. Then encode via scatter_.
insert image description here
Then raise the edge of the example graph. The input is the example map and the result is the boundary map. Concatenate the boundary map and the input label together as the input label.
insert image description here
The default is False.
insert image description here
Input the label into the generator.
insert image description here
Then look at netG.
insert image description here
Then look at define_G: many parameters, first is the number of input channels, then the number of output channels=3, ngf=64, netG=gloabl.

def define_G(input_nc, output_nc, ngf, netG, n_downsample_global=3, n_blocks_global=9, n_local_enhancers=1, n_blocks_local=3, norm='instance', gpu_ids=[]):    
    norm_layer = get_norm_layer(norm_type=norm)     
    if netG == 'global':    
        netG = GlobalGenerator(input_nc, output_nc, ngf, n_downsample_global, n_blocks_global, norm_layer)       
    elif netG == 'local':        
        netG = LocalEnhancer(input_nc, output_nc, ngf, n_downsample_global, n_blocks_global, 
                                  n_local_enhancers, n_blocks_local, norm_layer)
    elif netG == 'encoder':
        netG = Encoder(input_nc, output_nc, ngf, n_downsample_global, norm_layer)
    else:
        raise('generator not implemented!')
    print(netG)
    if len(gpu_ids) > 0:
        assert(torch.cuda.is_available())   
        netG.cuda(gpu_ids[0])
    netG.apply(weights_init)
    return netG

Look at the first parameter: if the label channel is not 0, input_nc=label_nc, otherwise input_nc=0. If you use instance, add 1 to the number of input channels of netG. If you use feature encoder network, add 3 to the input channel. According
insert image description here
to norm_type determines the normalization type:
insert image description here
then input to the global generator:
insert image description here

class GlobalGenerator(nn.Module):
    def __init__(self, input_nc, output_nc, ngf=64, n_downsampling=3, n_blocks=9, norm_layer=nn.BatchNorm2d, 
                 padding_type='reflect'):
        assert(n_blocks >= 0)
        super(GlobalGenerator, self).__init__()        
        activation = nn.ReLU(True)        

        model = [nn.ReflectionPad2d(3), nn.Conv2d(input_nc, ngf, kernel_size=7, padding=0), norm_layer(ngf), activation]
        ### downsample
        for i in range(n_downsampling):
            mult = 2**i
            model += [nn.Conv2d(ngf * mult, ngf * mult * 2, kernel_size=3, stride=2, padding=1),
                      norm_layer(ngf * mult * 2), activation]

        ### resnet blocks
        mult = 2**n_downsampling
        for i in range(n_blocks):
            model += [ResnetBlock(ngf * mult, padding_type=padding_type, activation=activation, norm_layer=norm_layer)]
        
        ### upsample         
        for i in range(n_downsampling):
            mult = 2**(n_downsampling - i)
            model += [nn.ConvTranspose2d(ngf * mult, int(ngf * mult / 2), kernel_size=3, stride=2, padding=1, output_padding=1),
                       norm_layer(int(ngf * mult / 2)), activation]
        model += [nn.ReflectionPad2d(3), nn.Conv2d(ngf, output_nc, kernel_size=7, padding=0), nn.Tanh()]        
        self.model = nn.Sequential(*model)
            
    def forward(self, input):
        return self.model(input)    

First, the original image pad=3, and then the input undergoes a 7x7 convolution to change the input channel to 64. The size of the picture remains the same, and the channel becomes 64.
insert image description here
Then perform three consecutive downsampling:
insert image description here
step1: i=0, mult=1, nn.conv2d(64,64 2,k=3,s=2,p=1), norm, act. (1,64,512,1024)—>(1,128,256,512)
step2: i=1, mul=2, nn. conv2d(64 2,
64 4, k=3, s=2, p=1), norm, act. (1,128,256,512)—>(1,256,128,256)
step3: i=2, mul=4, nn. conv2d(64
4,64*8, k=3, s=2, p=1), norm, act. (1,256,128,256)—>(1,512,64,128)
insert image description here
mul=8, there are 9 consecutive blocks. Each block calls Resnetblock once.

class ResnetBlock(nn.Module):
    def __init__(self, dim, padding_type, norm_layer, activation=nn.ReLU(True), use_dropout=False):
        super(ResnetBlock, self).__init__()
        self.conv_block = self.build_conv_block(dim, padding_type, norm_layer, activation, use_dropout)
    def build_conv_block(self, dim, padding_type, norm_layer, activation, use_dropout):
        conv_block = []
        p = 0
        if padding_type == 'reflect':
            conv_block += [nn.ReflectionPad2d(1)]
        elif padding_type == 'replicate':
            conv_block += [nn.ReplicationPad2d(1)]
        elif padding_type == 'zero':
            p = 1
        else:
            raise NotImplementedError('padding [%s] is not implemented' % padding_type)

        conv_block += [nn.Conv2d(dim, dim, kernel_size=3, padding=p),
                       norm_layer(dim),
                       activation]
        if use_dropout:
            conv_block += [nn.Dropout(0.5)]

        p = 0
        if padding_type == 'reflect':
            conv_block += [nn.ReflectionPad2d(1)]
        elif padding_type == 'replicate':
            conv_block += [nn.ReplicationPad2d(1)]
        elif padding_type == 'zero':
            p = 1
        else:
            raise NotImplementedError('padding [%s] is not implemented' % padding_type)
        conv_block += [nn.Conv2d(dim, dim, kernel_size=3, padding=p),
                       norm_layer(dim)]

        return nn.Sequential(*conv_block)

    def forward(self, x):
        out = x + self.conv_block(x)
        return out

Called internally: insert image description here
first add padding to the convblock.
insert image description here
Then add convolution inside, k=3, p=0, because the pad has been added beforehand, so the pad is not specified here, and the size does not change. If using dropout, add dropout.
insert image description here
Then perform the above operation again: the size remains unchanged.
insert image description here
Finally, another indentity is added.
insert image description here
Summary: There are two convolutions in one Convblock, which does not change the size or channel. If there are 9 Convblocks, then there are 18 convolutions without changing the channel and size.
Then upsampling:
insert image description here
step1: The input channel is 512, the output is 256, and the size is upsampled twice. norm, act.
step2: The input channel is 256, the output is 128, and the size is upsampled twice. norm, act.
step3: The input channel is 128, the output is 64, and the size is upsampled twice. norm, act.
Finally, a convolution is added, the output channel is 3, and the size remains the same.
Summary: GlobalGenerator: first downsample three times, then go through a residual convolution consisting of 18 convolutions, and finally upsample to the size of the original image, and the output channel is 3. Because the input is a label after one-hot encoding, the output is The image channel is 3.
If the generator is LocalEnhancer:
insert image description here

class LocalEnhancer(nn.Module):
    def __init__(self, input_nc, output_nc, ngf=32, n_downsample_global=3, n_blocks_global=9, 
                 n_local_enhancers=1, n_blocks_local=3, norm_layer=nn.BatchNorm2d, padding_type='reflect'):        
        super(LocalEnhancer, self).__init__()
        self.n_local_enhancers = n_local_enhancers
        
        ###### global generator model #####           
        ngf_global = ngf * (2**n_local_enhancers)
        model_global = GlobalGenerator(input_nc, output_nc, ngf_global, n_downsample_global, n_blocks_global, norm_layer).model        
        model_global = [model_global[i] for i in range(len(model_global)-3)] # get rid of final convolution layers        
        self.model = nn.Sequential(*model_global)                

        ###### local enhancer layers #####
        for n in range(1, n_local_enhancers+1):
            ### downsample            
            ngf_global = ngf * (2**(n_local_enhancers-n))
            model_downsample = [nn.ReflectionPad2d(3), nn.Conv2d(input_nc, ngf_global, kernel_size=7, padding=0), 
                                norm_layer(ngf_global), nn.ReLU(True),
                                nn.Conv2d(ngf_global, ngf_global * 2, kernel_size=3, stride=2, padding=1), 
                                norm_layer(ngf_global * 2), nn.ReLU(True)]
            ### residual blocks
            model_upsample = []
            for i in range(n_blocks_local):
                model_upsample += [ResnetBlock(ngf_global * 2, padding_type=padding_type, norm_layer=norm_layer)]

            ### upsample
            model_upsample += [nn.ConvTranspose2d(ngf_global * 2, ngf_global, kernel_size=3, stride=2, padding=1, output_padding=1), 
                               norm_layer(ngf_global), nn.ReLU(True)]      

            ### final convolution
            if n == n_local_enhancers:                
                model_upsample += [nn.ReflectionPad2d(3), nn.Conv2d(ngf, output_nc, kernel_size=7, padding=0), nn.Tanh()]                       
            
            setattr(self, 'model'+str(n)+'_1', nn.Sequential(*model_downsample))
            setattr(self, 'model'+str(n)+'_2', nn.Sequential(*model_upsample))                  
        
        self.downsample = nn.AvgPool2d(3, stride=2, padding=[1, 1], count_include_pad=False)

    def forward(self, input): 
        ### create input pyramid
        input_downsampled = [input]
        for i in range(self.n_local_enhancers):#1
            input_downsampled.append(self.downsample(input_downsampled[-1]))

        ### output at coarest level
        output_prev = self.model(input_downsampled[-1])        
        ### build up one layer at a time
        for n_local_enhancers in range(1, self.n_local_enhancers+1):
            model_downsample = getattr(self, 'model'+str(n_local_enhancers)+'_1')
            model_upsample = getattr(self, 'model'+str(n_local_enhancers)+'_2')            
            input_i = input_downsampled[self.n_local_enhancers-n_local_enhancers]            
            output_prev = model_upsample(model_downsample(input_i) + output_prev)
        return output_prev

The input is average pooled first: the size becomes half, and the channel remains unchanged.
insert image description here
In this way, there are two values ​​in the input_downsampled list, which are half of the input and downsampled values.
insert image description here
Then enter the value of half of the downsampling into the model: the GlobalGenerator that is still called.
insert image description here
model_global contains 17 convolutional layers: then len(model)=19, i from 0 to [(17-3)-1].
insert image description here
Then model_global contains the first 14 layers (0 to 13).
insert image description here
Next: Assuming that local_enhancer is instantiated as A, then getattr gets the value corresponding to the model1_1 attribute of A. getattr function
insert image description here
Let's go to the above to find: setattr is A to set the model1_1 attribute, the corresponding value is nn.Sequential(*model_downsample), and then get the attribute value through getattr, that is, model_downsample = nn.Sequential(*model_downsample).
insert image description here
Then look at the composition of nn.Sequential(*model_downsample):
insert image description here
This for loop only loops once: model_down consists of two convolutions, the output channel becomes 64, and the downsampling is 4 times. Model_up consists of three ResNetBlocks and a transposed convolution and a The output channel is a convolution composition of 3.
insert image description hereFinally, assign an attribute value to A:
insert image description here
Back to forward: input_i = the 0th value in the input_downsampled list, that is, input. The input is downsampled twice and then added to the value of the first 14 layers of GlobalGenerator. Upsample.
insert image description here
Corresponding to the original text:
insert image description here
Go back to pix2pixHD_model: self.netG is the specified network, and then call the forward function. Finally generate a fake picture.
insert image description here

Guess you like

Origin blog.csdn.net/qq_43733107/article/details/130852348