神经网络和反向传播算法实现案例(不用深度学习框架)

本文为神经网络和反向传播算法实现案例(不用深度学习框架),主要内容为解释代码,编程环境为python3。

目录:

  • 1.算法推导
  • 2.算法实现
  • 3.结果

1.算法推导

附上我目前见过神经网络和反向传播算法推导最全的文章,算法推导部分请大家移步下面连接:
https://www.zybuluo.com/hanbingtao/note/476663

2.算法实现

完整代码请参考GitHub: https://github.com/hanbt/learn_dl/blob/master/bp.py (python2.7)
本文已将代码改为python格式,与原文区别有:

  • reduce函数在当前版本中需要导入函数工具模块(from functools import reduce);
  • map(function)函数使用后需要使用list(map(function))转化为数组;

基本模型如下图所示:
在这里插入图片描述
如上图,可以分解出5个领域对象来实现神经网络:
Network 神经网络对象,提供API接口。它由若干层对象组成以及连接对象组成。
Layer 层对象,由多个节点组成。
Node 节点对象计算和记录节点自身的信息(比如输出值、误差项等),以及与这个节点相关的上下游的连接。Connection 每个连接对象都要记录该连接的权重。
Connections 仅仅作为Connection的集合对象,提供一些集合操作。

2.1 准备工作

导入模块、定义激活函数

import random
from numpy import *
from functools import reduce

def sigmoid(inX):
    return 1.0 / (1 + exp(-inX))

2.2 构建神经网络

定义节点、神经层、神经层之间的连接
1).节点定义:

class Node(object):
    #下文由class Layer(object)通过self.nodes.append(Node(layer_index, i))语句调用
    def __init__(self, layer_index, node_index):
	''' 构造节点对象。        
	    layer_index: 节点所属的层的编号       
	    node_index: 节点的编号        
	 '''
	self.layer_index = layer_index
        self.node_index = node_index
        self.downstream = []
        self.upstream = []
        self.output = 0
        self.delta = 0

    def set_output(self, output):
	'''        
	  设置节点的输出值。如果节点属于输入层会用到这个函数。        
	'''
	self.output = output

    def append_downstream_connection(self, conn):
        '''        
        添加一个到下游节点的连接        
    	'''
        self.downstream.append(conn)

    def append_upstream_connection(self, conn):
        '''        
        添加一个到上游节点的连接        
        '''
        self.upstream.append(conn)

    def calc_output(self):
        '''        
        计算节点输出        
        reduce()的函数原型是: reduce(function(), iterable[, initializer]),函数数据进行下列操作:用传给 reduce 中的函数 function(二元函数)先对集合中的第 1、2 个元素进行操作,得到的结果再与第三个数据用 function 函数运算,最后得到一个结果。
        下面由于初始化数值为0,开始时ret、conn为upstream数组的前两项,运算后的值暂存在ret中,conn为数组下一位置的值。
        '''
        output = reduce(lambda ret, conn: ret + conn.upstream_node.output * conn.weight, self.upstream, 0)
        self.output = sigmoid(output)

    def calc_hidden_layer_delta(self):
        '''        
        计算隐藏层的误差项       
        '''
        downstream_delta = reduce(
            lambda ret, conn: ret + conn.downstream_node.delta * conn.weight,
            self.downstream, 0.0)
        self.delta = self.output * (1 - self.output) * downstream_delta

    def calc_output_layer_delta(self, label):
        '''        
        计算输出层的误差项       
        '''
        self.delta = self.output * (1 - self.output) * (label - self.output)

    def __str__(self):#打印结果
        node_str = '%u-%u: output: %f delta: %f' % (self.layer_index, self.node_index, self.output, self.delta)
        downstream_str = reduce(lambda ret, conn: ret + '\n\t' + str(conn), self.downstream, '')
        upstream_str = reduce(lambda ret, conn: ret + '\n\t' + str(conn), self.upstream, '')
        return node_str + '\n\tdownstream:' + downstream_str + '\n\tupstream:' + upstream_str


class ConstNode(object):
	'''
	ConstNode对象,为了实现一个输出恒为1的节点(计算偏置项时需要)
	'''
    def __init__(self, layer_index, node_index):
        self.layer_index = layer_index
        self.node_index = node_index
        self.downstream = []
        self.output = 1

    def append_downstream_connection(self, conn):
        self.downstream.append(conn)

    def calc_hidden_layer_delta(self):
        downstream_delta = reduce(
            lambda ret, conn: ret + conn.downstream_node.delta * conn.weight,
            self.downstream, 0.0)
        self.delta = self.output * (1 - self.output) * downstream_delta

    def __str__(self):
        node_str = '%u-%u: output: 1' % (self.layer_index, self.node_index)
        downstream_str = reduce(lambda ret, conn: ret + '\n\t' + str(conn), self.downstream, '')
        return node_str + '\n\tdownstream:' + downstream_str

2).神经层对象定义:

class Layer(object):
    def __init__(self, layer_index, node_count):
    #由下文classNetwork(object):self.layers.append(Layer(i, layers[i]))所调用
        ''' 初始化一层        
            layer_index: 层编号        
            node_count: 层所包含的节点个数        
        '''
        self.layer_index = layer_index
        self.nodes = []
        for i in range(node_count):
            self.nodes.append(Node(layer_index, i))#使用Node对象建立节点
        self.nodes.append(ConstNode(layer_index, node_count))#使用ConstNode对象建立节点ConstNode对象,为了实现一个输出恒为1的节点(计算偏置项时需要)
    def set_output(self, data):
        for i in range(len(data)):
            self.nodes[i].set_output(data[i])

    def calc_output(self):
        for node in self.nodes[:-1]:
            node.calc_output()

    def dump(self):
        for node in self.nodes:
            print(node)

3).神经层间的连接定义:

class Connection(object):
	'''
	初始化连接,权重初始化为是一个很小的随机数        
	upstream_node: 连接的上游节点        
	downstream_node: 连接的下游节点
	Connection对象,包含有计算单个梯度、更新节点权值的方法
	'''

    def __init__(self, upstream_node, downstream_node):
        self.upstream_node = upstream_node
        self.downstream_node = downstream_node
        self.weight = random.uniform(-0.1, 0.1)
        self.gradient = 0.0

    def calc_gradient(self):
 	'''
 	梯度=误差项*上游节点输出
 	'''
        self.gradient = self.downstream_node.delta * self.upstream_node.output

    def update_weight(self, rate):
    	'''
    	新权值=旧权值+学习率*梯度
    	'''
        self.calc_gradient()
        self.weight += rate * self.gradient

    def get_gradient(self):
        return self.gradient

    def __str__(self):
        return '(%u-%u) -> (%u-%u) = %f' % (
            self.upstream_node.layer_index,
            self.upstream_node.node_index,
            self.downstream_node.layer_index,
            self.downstream_node.node_index,
            self.weight)


class Connections(object):
    def __init__(self):
        self.connections = []

    def add_connection(self, connection):
        self.connections.append(connection)

    def dump(self):
        for conn in self.connections:
            print(conn)

4).Network对象,提供API。

class Network(object):
    def __init__(self, layers):#net = Network([8, 3, 8])->layers=[8,3,8]
        self.connections = Connections()#建立连接数组,初始化connections=[]
        self.layers = []
        layer_count = len(layers)#神经层数:3
        node_count = 0
        for i in range(layer_count):
            self.layers.append(Layer(i, layers[i]))#使用Layer对象建立神经层(3层)
        for layer in range(layer_count - 1):
            connections_1 = [Connection(upstream_node, downstream_node)
                           for upstream_node in self.layers[layer].nodes
                           for downstream_node in self.layers[layer + 1].nodes[:-1]]#(除node数组最后一位),因为最后一位为偏置项。
            '''
            这里与源代码不同,源代码为connections,而非connections_1,connections_1是一个数组,数组的成员为Connection对象
            '''
            for conn in connections_1:
            '''
            以下几行用于了解conn
            	print("hhh1")
            	print(layer)
	    	print(conn)
	    	print(conn.upstream_node)
	    	print(conn.downstream_node)
	    '''
                self.connections.add_connection(conn)
                conn.downstream_node.append_upstream_connection(conn)
                conn.upstream_node.append_downstream_connection(conn)

    def train(self, labels, data_set, rate, epoch):
        for i in range(epoch):
            for d in range(len(data_set)):
                self.train_one_sample(labels[d], data_set[d], rate)
                # print 'sample %d training finished' % d

    def train_one_sample(self, label, sample, rate):
        self.predict(sample)
        self.calc_delta(label)
        self.update_weight(rate)

    def calc_delta(self, label):
    	'''
    	计算误差项,先计算输出层的误差,再逐层计算隐藏层误差,反向传播,由于本案例只含有一个隐藏层。
    	'''
        output_nodes = self.layers[-1].nodes
        for i in range(len(label)):
            output_nodes[i].calc_output_layer_delta(label[i])
        for layer in self.layers[-2::-1]:
            for node in layer.nodes:
                node.calc_hidden_layer_delta()

    def update_weight(self, rate):
    '''
    	逐层更新权值的方法
    '''
        for layer in self.layers[:-1]:
            for node in layer.nodes:
                for conn in node.downstream:
                    conn.update_weight(rate)

    def calc_gradient(self):
    '''
    	逐层计算梯度方法
    '''
        for layer in self.layers[:-1]:
            for node in layer.nodes:
                for conn in node.downstream:
                    conn.calc_gradient()

    def get_gradient(self, label, sample):
        self.predict(sample)
        self.calc_delta(label)
        self.calc_gradient()

    def predict(self, sample):
    '''
    	将样本输入至输入层,计算输出
    '''
        #print(sample)
        self.layers[0].set_output(sample)
        for i in range(1, len(self.layers)):
            self.layers[i].calc_output()
        return map(lambda node: node.output, self.layers[-1].nodes[:-1])

    def dump(self):
        for layer in self.layers:
            layer.dump()

5).产生数据集:

class Normalizer(object):
    '''
     用于建立数据集
    '''
   def __init__(self):
        self.mask = [0x1, 0x2, 0x4, 0x8, 0x10, 0x20, 0x40, 0x80]

    def norm(self, number):
     '''
     数据集生成——编码
     '''
        return list(map(lambda m: 0.9 if number & m else 0.1, self.mask))

    def denorm(self, vec):
      '''
      数据集解码,用于预测
      '''
        binary = list(map(lambda i: 1 if i > 0.5 else 0, vec))
        for i in range(len(self.mask)):
            binary[i] = binary[i] * self.mask[i]
        return reduce(lambda x, y: x + y, binary)
        
def train_data_set():
    normalizer = Normalizer()
    data_set = []
    labels = []
    for i in range(0, 256, 8):
        n = normalizer.norm(int(random.uniform(0, 256)))
        data_set.append(n)
        labels.append(n)
    return labels, data_set

6).计算平方均值误差:

def mean_square_error(vec1, vec2):
    return 0.5 * reduce(lambda a, b: a + b,
                        map(lambda v: (v[0] - v[1]) * (v[0] - v[1]),
                            zip(vec1, vec2)
                            )
                        )

7).梯度检查:
梯度检查部分看博文:https://www.zybuluo.com/hanbingtao/note/476663

def gradient_check(network, sample_feature, sample_label):
    '''
    梯度检查
    network: 神经网络对象
    sample_feature: 样本的特征
    sample_label: 样本的标签
    '''
    # 计算网络误差
    network_error = lambda vec1, vec2: \
        0.5 * reduce(lambda a, b: a + b,
                     map(lambda v: (v[0] - v[1]) * (v[0] - v[1]),
                         zip(vec1, vec2)))

    # 获取网络在当前样本下每个连接的梯度
    network.get_gradient(sample_feature, sample_label)

    # 对每个权重做梯度检查
    for conn in network.connections.connections:
        # 获取指定连接的梯度
        actual_gradient = conn.get_gradient()

        # 增加一个很小的值,计算网络的误差
        epsilon = 0.0001
        conn.weight += epsilon
        error1 = network_error(network.predict(sample_feature), sample_label)

        # 减去一个很小的值,计算网络的误差
        conn.weight -= 2 * epsilon  # 刚才加过了一次,因此这里需要减去2倍
        error2 = network_error(network.predict(sample_feature), sample_label)

        # 根据式6计算期望的梯度值
        expected_gradient = (error2 - error1) / (2 * epsilon)

        # 打印
        print('expected gradient: \t%f\nactual gradient: \t%f' % (
            expected_gradient, actual_gradient))

附上完整代码:

# -*- coding: UTF-8 -*-

import random
from numpy import *
from functools import reduce


def sigmoid(inX):
    return 1.0 / (1 + exp(-inX))


class Node(object):
    def __init__(self, layer_index, node_index):
        self.layer_index = layer_index
        self.node_index = node_index
        self.downstream = []
        self.upstream = []
        self.output = 0
        self.delta = 0

    def set_output(self, output):
        self.output = output

    def append_downstream_connection(self, conn):
        self.downstream.append(conn)

    def append_upstream_connection(self, conn):
        self.upstream.append(conn)

    def calc_output(self):
        output = reduce(lambda ret, conn: ret + conn.upstream_node.output * conn.weight, self.upstream, 0)
        self.output = sigmoid(output)

    def calc_hidden_layer_delta(self):
        downstream_delta = reduce(
            lambda ret, conn: ret + conn.downstream_node.delta * conn.weight,
            self.downstream, 0.0)
        self.delta = self.output * (1 - self.output) * downstream_delta

    def calc_output_layer_delta(self, label):
        self.delta = self.output * (1 - self.output) * (label - self.output)

    def __str__(self):
        node_str = '%u-%u: output: %f delta: %f' % (self.layer_index, self.node_index, self.output, self.delta)
        downstream_str = reduce(lambda ret, conn: ret + '\n\t' + str(conn), self.downstream, '')
        upstream_str = reduce(lambda ret, conn: ret + '\n\t' + str(conn), self.upstream, '')
        return node_str + '\n\tdownstream:' + downstream_str + '\n\tupstream:' + upstream_str


class ConstNode(object):
    def __init__(self, layer_index, node_index):
        self.layer_index = layer_index
        self.node_index = node_index
        self.downstream = []
        self.output = 1

    def append_downstream_connection(self, conn):
        self.downstream.append(conn)

    def calc_hidden_layer_delta(self):
        downstream_delta = reduce(
            lambda ret, conn: ret + conn.downstream_node.delta * conn.weight,
            self.downstream, 0.0)
        self.delta = self.output * (1 - self.output) * downstream_delta

    def __str__(self):
        node_str = '%u-%u: output: 1' % (self.layer_index, self.node_index)
        downstream_str = reduce(lambda ret, conn: ret + '\n\t' + str(conn), self.downstream, '')
        return node_str + '\n\tdownstream:' + downstream_str


class Layer(object):
    def __init__(self, layer_index, node_count):
        self.layer_index = layer_index
        self.nodes = []
        for i in range(node_count):
            self.nodes.append(Node(layer_index, i))
        self.nodes.append(ConstNode(layer_index, node_count))

    def set_output(self, data):
        for i in range(len(data)):
            self.nodes[i].set_output(data[i])

    def calc_output(self):
        for node in self.nodes[:-1]:
            node.calc_output()

    def dump(self):
        for node in self.nodes:
            print(node)


class Connection(object):
    def __init__(self, upstream_node, downstream_node):
        self.upstream_node = upstream_node
        self.downstream_node = downstream_node
        self.weight = random.uniform(-0.1, 0.1)
        self.gradient = 0.0

    def calc_gradient(self):
        self.gradient = self.downstream_node.delta * self.upstream_node.output

    def update_weight(self, rate):
        self.calc_gradient()
        self.weight += rate * self.gradient

    def get_gradient(self):
        return self.gradient

    def __str__(self):
        return '(%u-%u) -> (%u-%u) = %f' % (
            self.upstream_node.layer_index,
            self.upstream_node.node_index,
            self.downstream_node.layer_index,
            self.downstream_node.node_index,
            self.weight)


class Connections(object):
    def __init__(self):
        self.connections = []

    def add_connection(self, connection):
        self.connections.append(connection)

    def dump(self):
        for conn in self.connections:
            print(conn)


class Network(object):
   def __init__(self, layers):
        self.connections = Connections()
        self.layers = []
        layer_count = len(layers)
        node_count = 0
        for i in range(layer_count):
            self.layers.append(Layer(i, layers[i]))
        for layer in range(layer_count - 1):
            connections = [Connection(upstream_node, downstream_node)
                           for upstream_node in self.layers[layer].nodes
                           for downstream_node in self.layers[layer + 1].nodes[:-1]]
            for conn in connections:
                self.connections.add_connection(conn)
                conn.downstream_node.append_upstream_connection(conn)
                conn.upstream_node.append_downstream_connection(conn)

    def train(self, labels, data_set, rate, epoch):
        for i in range(epoch):
            for d in range(len(data_set)):
                self.train_one_sample(labels[d], data_set[d], rate)
                # print 'sample %d training finished' % d

    def train_one_sample(self, label, sample, rate):
        self.predict(sample)
        self.calc_delta(label)
        self.update_weight(rate)

    def calc_delta(self, label):
        output_nodes = self.layers[-1].nodes
        for i in range(len(label)):
            output_nodes[i].calc_output_layer_delta(label[i])
        for layer in self.layers[-2::-1]:
            for node in layer.nodes:
                node.calc_hidden_layer_delta()

    def update_weight(self, rate):
        for layer in self.layers[:-1]:
            for node in layer.nodes:
                for conn in node.downstream:
                    conn.update_weight(rate)

    def calc_gradient(self):
        for layer in self.layers[:-1]:
            for node in layer.nodes:
                for conn in node.downstream:
                    conn.calc_gradient()

    def get_gradient(self, label, sample):
        self.predict(sample)
        self.calc_delta(label)
        self.calc_gradient()

    def predict(self, sample):
        #print(sample)
        self.layers[0].set_output(sample)
        for i in range(1, len(self.layers)):
            self.layers[i].calc_output()
        return map(lambda node: node.output, self.layers[-1].nodes[:-1])

    def dump(self):
        for layer in self.layers:
            layer.dump()


class Normalizer(object):
    '''
    	用于建立数据集
    '''
    def __init__(self):
        self.mask = [0x1, 0x2, 0x4, 0x8, 0x10, 0x20, 0x40, 0x80]

    def norm(self, number):
    	'''
    	数据集生成——编码
    	'''
        return list(map(lambda m: 0.9 if number & m else 0.1, self.mask))

    def denorm(self, vec):
         '''
    	 数据集解码,用于预测
     	'''
        binary = list(map(lambda i: 1 if i > 0.5 else 0, vec))
        for i in range(len(self.mask)):
            binary[i] = binary[i] * self.mask[i]
        return reduce(lambda x, y: x + y, binary)


def mean_square_error(vec1, vec2):
    return 0.5 * reduce(lambda a, b: a + b,
                        map(lambda v: (v[0] - v[1]) * (v[0] - v[1]),
                            zip(vec1, vec2)
                            )
                        )


def gradient_check(network, sample_feature, sample_label):
    '''
    梯度检查
    network: 神经网络对象
    sample_feature: 样本的特征
    sample_label: 样本的标签
    '''
    # 计算网络误差
    network_error = lambda vec1, vec2: \
        0.5 * reduce(lambda a, b: a + b,
                     map(lambda v: (v[0] - v[1]) * (v[0] - v[1]),
                         zip(vec1, vec2)))

    # 获取网络在当前样本下每个连接的梯度
    network.get_gradient(sample_feature, sample_label)

    # 对每个权重做梯度检查
    for conn in network.connections.connections:
        # 获取指定连接的梯度
        actual_gradient = conn.get_gradient()

        # 增加一个很小的值,计算网络的误差
        epsilon = 0.0001
        conn.we’ight += epsilon
        error1 = network_error(network.predict(sample_feature), sample_label)

        # 减去一个很小的值,计算网络的误差
        conn.weight -= 2 * epsilon  # 刚才加过了一次,因此这里需要减去2倍
        error2 = network_error(network.predict(sample_feature), sample_label)

        # 根据式6计算期望的梯度值
        expected_gradient = (error2 - error1) / (2 * epsilon)

        # 打印
        print('expected gradient: \t%f\nactual gradient: \t%f' % (
            expected_gradient, actual_gradient))


def train_data_set(
    '''
    	建立数据集
    '''
    normalizer = Normalizer()#实例化Normaliazer类
    data_set = []
    labels = []
    for i in range(0, 256, 8):
        n = normalizer.norm(int(random.uniform(0, 256)))
        data_set.append(n)
        labels.append(n)
    return labels, data_set


def train(network):
    labels, data_set = train_data_set()#获取数据集
    network.train(labels, data_set, 0.3, 50)#调用Network对象train方法进行训练


def test(network, data):
    normalizer = Normalizer()
    norm_data = normalizer.norm(data)
    predict_data = network.predict(norm_data)
    print('\ttestdata(%u)\tpredict(%u)' % (
        data, normalizer.denorm(predict_data)))


def correct_ratio(network):
    normalizer = Normalizer()
    correct = 0.0
    for i in range(256):
        if normalizer.denorm(network.predict(normalizer.norm(i))) == i:
            correct += 1.0
    print('correct_ratio: %.2f%%' % (correct / 256 * 100))


def gradient_check_test():
    net = Network([2, 2, 2])
    sample_feature = [0.9, 0.1]
    sample_label = [0.9, 0.1]
    gradient_check(net, sample_feature, sample_label)


if __name__ == '__main__':
    net = Network([8, 3, 8])#共三层神经网络,各层节点数分别为8,3,8
    train(net)#训练神经网络
    net.dump()
    correct_ratio(net)#测试

3.运行结果:

结果不尽如人意,这次学习代码,后面有机会进行优化吧。
在这里插入图片描述
欢迎大家交流,如有不对之处,敬请指正。

Guess you like

Origin blog.csdn.net/weixin_45582028/article/details/103563720