[Advanced Mathematics Notes] Stolz Theorem

Stolz's theorem can be understood as "L'Hopital's law of sequence", which reveals the relationship between the limit of the ratio of two sequences and the limit of the ratio of the difference between adjacent two terms.

Stolz's theorem

∗ ∞ \cfrac{*}{\infty}type

Theorem 1 Let { an } \{a_n\}{ an} and{ bn } \{b_n\}{ bn} are two real number columns, where{ bn } \{b_n\}{ bn} is strictly monotonic and tends to infinity (+ ∞ +\infty+ or− ∞ -\infty)。若极限 lim ⁡ n → ∞ a n + 1 − a n b n + 1 − b n = l \lim\limits_{n\to\infty}\cfrac{a_{n+1}-a_n}{b_{n+1}-b_n}=l nlimbn+1bnan+1an=l exists, thenlim ⁡ n → ∞ anbn = l \lim\limits_{n\to\infty}\cfrac{a_n}{b_n}=lnlimbnan=l

Proof : Let lim ⁡ n → ∞ bn = + ∞ \lim\limits_{n\to\infty}b_n=+\inftynlimbn=+ , and{ bn } \{b_n\}{ bn} is strictly monotonically increasing. Fromlim ⁡ n → ∞ an + 1 − anbn + 1 − bn = l \lim\limits_{n\to\infty}\cfrac{a_{n+1}-a_n}{b_{n+1}-b_n} =lnlimbn+1bnan+1an=l知,∀ ε 2 > 0 \forall\cfrac{\varepsilon}{2}>02e>0 ∃ N \exists N N such that∀ n > N \forall n>Nn>N,都有 ∣ a n + 1 − a n b n + 1 − b n − l ∣ < ε 2 \left|\cfrac{a_{n+1}-a_n}{b_{n+1}-b_n}-l\right|<\frac{\varepsilon}{2} bn+1bnan+1anl <2el − ε 2 < an + 1 − anbn + 1 − bn < l + ε 2 l-\cfrac{\varepsilon}{2}<\cfrac{a_{n+1}-a_n}{b_{n+1 }-b_n}<l+\cfrac{\varepsilon}{2}l2e<bn+1bnan+1an<l+2eBecause { bn } \{b_n\}{ bn} Strictly monotonically increasing, sobn + 1 − bn > 0 b_{n+1}-b_n>0bn+1bn>0。因此 ( l − ε 2 ) ( b n + 1 − b n ) < a n + 1 − a n < ( l + ε 2 ) ( b n + 1 − b n ) \left(l-\cfrac{\varepsilon}{2}\right)(b_{n+1}-b_n)<a_{n+1}-a_n<\left(l+\cfrac{\varepsilon}{2}\right)(b_{n+1}-b_n) (l2e)(bn+1bn)<an+1an<(l+2e)(bn+1bn)注意到 a n = ( a n − a n − 1 ) + ( a n − 1 + a n − 2 ) + ⋯ + ( a N + 2 − a N + 1 ) + a N + 1 a_n=(a_n-a_{n-1})+(a_{n-1}+a_{n-2})+\cdots+(a_{N+2}-a_{N+1})+a_{N+1} an=(anan1)+(an1+an2)++(aN+2aN+1)+aN+1, then we can give an a_nan的下界: a N > ( l − ε 2 ) ( b n − b n − 1 ) + ( l − ε 2 ) ( b n − 1 − b n − 2 ) + ⋯ + ( l − ε 2 ) ( b N + 2 − b N + 1 ) + a N + 1 = ( l − ε 2 ) ( b n − b N + 1 ) + a N + 1 \begin{aligned} a_N&>\left(l-\cfrac{\varepsilon}{2}\right)(b_{n}-b_{n-1})+\left(l-\cfrac{\varepsilon}{2}\right)(b_{n-1}-b_{n-2})+\cdots+\left(l-\cfrac{\varepsilon}{2}\right)(b_{N+2}-b_{N+1})+a_{N+1}\\ &=\left(l-\cfrac{\varepsilon}{2}\right)(b_{n}-b_{N+1})+a_{N+1} \end{aligned} aN>(l2e)(bnbn1)+(l2e)(bn1bn2)++(l2e)(bN+2bN+1)+aN+1=(l2e)(bnbN+1)+aN+1At the same time, an upper bound can also be given: a N < ( l + ε 2 ) ( bn − b N + 1 ) + a N + 1 a_N<\left(l+\cfrac{\varepsilon}{2}\right)(b_ {n}-b_{N+1})+a_{N+1}aN<(l+2e)(bnbN+1)+aN+1Because lim ⁡ n → ∞ bn = + ∞ \lim\limits_{n\to\infty}b_n=+\inftynlimbn=+,故 ∃ N ′ \exists N' N , such that∀ n > N ′ \forall n>N'n>N , withbn > 0 b_n>0bn>0 . (i.e.bn b_nbnAlways positive after a term. ) Now, for n > max ⁡ { N , N ′ } n>\max\{N,N'\}n>max{ N,N },an a_nanDivide both sides of the upper and lower bounds by bn b_nbn ( l − ε 2 ) − ( l − ε 2 ) b N + 1 b n + a N + 1 b n < a n b n < ( l + ε 2 ) − ( l + ε 2 ) b N + 1 b n + a N + 1 b n \left(l-\cfrac{\varepsilon}{2}\right) \textcolor{blue}{-\left(l-\cfrac{\varepsilon}{2}\right)\frac{b_{N+1}}{b_{n}}+\cfrac{a_{N+1}}{b_{n}}} <\cfrac{a_n}{b_n}< \left(l+\cfrac{\varepsilon}{2}\right) \textcolor{green}{-\left(l+\cfrac{\varepsilon}{2}\right)\cfrac{b_{N+1}}{b_{n}}+\cfrac{a_{N+1}}{b_{n}}} (l2e)(l2e)bnbN+1+bnaN+1<bnan<(l+2e)(l+2e)bnbN+1+bnaN+1注意 − ( l − ε 2 ) b N + 1 b n + a N + 1 b n \textcolor{blue}{-\left(l-\cfrac{\varepsilon}{2}\right)\frac{b_{N+1}}{b_{n}}+\cfrac{a_{N+1}}{b_{n}}} (l2e)bnbN+1+bnaN+1 − ( l + ε 2 ) b N + 1 b n + a N + 1 b n \textcolor{green}{-\left(l+\cfrac{\varepsilon}{2}\right)\cfrac{b_{N+1}}{b_{n}}+\cfrac{a_{N+1}}{b_{n}}} (l+2e)bnbN+1+bnaN+1actually tends to 0 00的,that is,∀ ε 2 > 0 \forall\cfrac{\varepsilon}{2}>02e>0 , there existsN + > N ′ N_+>N'N+>N andN − > N ′ N_->N'N>N , so that whenn > N ∗ = max ⁡ { N + , N − } n>N^*=\max\{N_+,N_-\}n>N=max{ N+,N}时,有 ∣ − ( l − ε 2 ) b N + 1 b n + a N + 1 b n ∣ < ε 2 ∣ − ( l + ε 2 ) b N + 1 b n + a N + 1 b n ∣ < ε 2 \left|\textcolor{blue}{-\left(l-\cfrac{\varepsilon}{2}\right)\frac{b_{N+1}}{b_{n}}+\cfrac{a_{N+1}}{b_{n}}}\right|<\cfrac{\varepsilon}{2}\\ \left|\textcolor{green}{-\left(l+\cfrac{\varepsilon}{2}\right)\cfrac{b_{N+1}}{b_{n}}+\cfrac{a_{N+1}}{b_{n}}}\right|<\cfrac{\varepsilon}{2} (l2e)bnbN+1+bnaN+1 <2e (l+2e)bnbN+1+bnaN+1 <2el − ε = l − ε 2 − ε 2 < anbn < l + ε 2 + ε 2 = l + ε l-\varepsilon=l-\cfrac{\varepsilon}{2}-\cfrac{\varepsilon}{ 2} < \cfrac{a_n}{b_n} < l+\cfrac{\varepsilon}{2}+\cfrac{\varepsilon}{2}=l+\varepsilonle=l2e2e<bnan<l+2e+2e=l+ε Therefore, we prove that:∀ ε > 0 \forall\varepsilon>0ε>0 ∃ N ∗ = max ⁡ { N + , N − } \exists N^*=\max\{N_+,N_-\} N=max{ N+,N} , such that∀ n > N ∗ \forall n>N^*n>N,有 ∣ a n b n − l ∣ < ε \left|\cfrac{a_n}{b_n}-l\right|<\varepsilon bnanl <ε ,inlim ⁡ n → ∞ anbn = l \lim\limits_{n\to\infty}\cfrac{a_n}{b_n}=lnlimbnan=l

0 0 \cfrac{0}{0} 00type

Theorem 2 Let { an } \{a_n\}{ an} and{ bn } \{b_n\}{ bn} are two real numbers,lim ⁡ n → ∞ an = lim ⁡ n → ∞ bn = 0 \lim\limits_{n\to\infty}a_n=\lim\limits_{n\to\infty}b_n=0nliman=nlimbn=0 andbn b_nbnStrictly monotonically decreasing. If the limit lim ⁡ n → ∞ an + 1 − anbn + 1 − bn = l \lim\limits_{n\to\infty}\cfrac{a_{n+1}-a_n}{b_{n+1}-b_n }=lnlimbn+1bnan+1an=l exists, thenlim ⁡ n → ∞ anbn = l \lim\limits_{n\to\infty}\cfrac{a_n}{b_n}=lnlimbnan=l

Proof summary : Will an a_nan写成 a n = ( a n − a n + 1 ) + ( a n + 1 − a n + 2 ) + ⋯ + ( a n − ν + 1 − a n + ν ) + a n + ν a_n=(a_{n}-a_{n+1})+(a_{n+1}-a_{n+2})+\cdots+(a_{n-\nu+1}-a_{n+\nu})+a_{n+\nu} an=(anan+1)+(an+1an+2)++(an n + 1an + n)+an + n, then giving an a_nanThe upper and lower bounds of , both sides are divided by bn b_n at the same timebn, notice that an + ν a_{n+\nu}an + nbn + ν b_{n+\nu}bn + nTend to 0 00 can be proved.

example

1. The limit of the arithmetic mean

We want to prove that lim ⁡ n → ∞ x 1 + x 2 + ⋯ + xnn = lim ⁡ n → ∞ xn \lim\limits_{n\to\infty}\cfrac{x_1+x_2+\cdots+x_n}{n}= \lim\limits_{n\to\infty}x_nnlimnx1+x2++xn=nlimxn

定义 a n = x 1 + x 2 + ⋯ + x n a_n=x_1+x_2+\cdots+x_n an=x1+x2++xn b n = n b_n=n bn=n。则要证 lim ⁡ n → ∞ a n b n = lim ⁡ n → ∞ x n \lim\limits_{n\to\infty}\cfrac{a_n}{b_n}=\lim\limits_{n\to\infty}x_n nlimbnan=nlimxn. attention an + 1 − an = xn a_{n+1}-a_{n}=x_nan+1an=xn b n + 1 − b n = 1 b_{n+1}-b_{n}=1 bn+1bn=1 , it should now be obvious what to do.

2.

lim ⁡ n → ∞ [ ( n + 1 ) ! n + 1 − n ! n ] \lim\limits_{n\to\infty}\left[\sqrt[n+1]{(n+1)!}-\sqrt[n]{n!}\right] nlim[n+1(n+1)! nn! ]

Orderan = n !n a_n=\sqrt[n]{n!}an=nn! b n = n b_n=n bn=n,则 lim ⁡ n → ∞ [ ( n + 1 ) ! n + 1 − n ! n ] = lim ⁡ n → ∞ a n + 1 − a n b n + 1 − b n = lim ⁡ n → ∞ a n b n = lim ⁡ n → ∞ n ! n n \lim\limits_{n\to\infty}\left[\sqrt[n+1]{(n+1)!}-\sqrt[n]{n!}\right]=\lim\limits_{n\to\infty}\cfrac{a_{n+1}-a_{n}}{b_{n+1}-b_{n}}=\lim\limits_{n\to\infty}\cfrac{a_{n}}{b_{n}}=\lim\limits_{n\to\infty}\frac{\sqrt[n]{n!}}{n} nlim[n+1(n+1)! nn! ]=nlimbn+1bnan+1an=nlimbnan=nlimnnn! New Stirling City, n ! ∼ 2 π n ( and ) nn!\sim\sqrt{2\pi n}{\left(\frac{n}{e}\right)}^nn!2πn (en)n ,iflim ⁡ n → ∞ n ! nn = lim ⁡ n → ∞ ( 2 π n ) 1 2 n ⋅ nen = 1 e \lim\limits_{n\to\infty}\frac{\sqrt[n]{n!}}{n}=\lim \limits_{n\to\infty}\cfrac{ {(2\pi n)}^{\frac{1}{2n}}\cdot \cfrac{n}{e}}{n}=\cfrac{1 }{e}nlimnnn! =nlimn(2πn)2 n1en=e1

Guess you like

Origin blog.csdn.net/qaqwqaqwq/article/details/130511511