Google Earth Engine (GEE) - Farming practices for global crop production (4403 paired yield observations for 8 major staple crops in 50 countries between 1980 and 2017)

Farming practices for global crop production¶.
No-tillage (NT) is generally considered a means of growing crops with positive environmental externalities, such as enhanced carbon sequestration, improved soil quality, reduced soil erosion, and increased biodiversity. However, whether NT systems are as productive as systems relying on conventional tillage (CT) is a matter of debate, fraught with high variability in time and space. Here, we expand existing datasets to include recent field experiment results and produce a global dataset comparing crop yields obtained under CT and NT systems. In addition to crop yields, our dataset also reports information on crop growing seasons, management practices, soil characteristics, and key climate parameters throughout the experimental year. The final dataset contains 4403 paired yield observations for 8 major staple food crops in 50 countries between 1980 and 2017. This dataset provides insight into the main drivers explaining changes in productivity of new technologies and the impact of adoption of new technologies on crop yields. Preface – Bed Length Artificial Intelligence Tutorial

 

Data Citation

Su, Y., Gabrielle, B. & Makowski, D. A global dataset for crop production under conventional tillage and no tillage systems. figshare https://doi.org/10.6084/m9.figshare.12155553 (2020). v14

Paper Citation

Su, Y., Gabrielle, B. & Makowski, D. A global dataset for crop production under conventional tillage and no tillage systems. Scientific Data 8, 33 (2021).

Earth Engine Snippet

var tillage = ee.FeatureCollection("projects/sat-io/open-datasets/global_tillage_production");


print(tillage.size(),'Total observations')

// Get a color from crop types
var cropColor = ee.Dictionary({
  'maize': '000000',
  'barley.spring': '593704',
  'soybean': 'BC80BD',
  'wheat.winter': '0565A6',
  'cotton': 'E31A1C',
  'sorghum': 'FF7F00',
  'sunflower': '6A3D9A',
  'wheat_spring': '5CA2D1',
});

// List of crop types to add to the map
var crops = ['maize', 'barley.spring', 'soybean', 'wheat.winter', 'cotton', 'sorghum', 'sunflower',
    'wheat_spring'];

function addStyle(pt) {
  var color = cropColor.get(pt.get('crop'));
  return pt.set('styleProperty', ee.Dictionary({'pointSize': 2, 'color': color}));
}

// Make a FeatureCollection out of the crop table
var pp = ee.FeatureCollection(tillage).map(addStyle);
print(pp.first());

/**
 * Adds crop types to the map.
 *
 * @param {string} fuel A fuel type
 */
function addLayer(fuel) {
  print(fuel);
  Map.addLayer(pp.filter(ee.Filter.eq('crop', fuel)).style({styleProperty: 'styleProperty', neighborhood: 50}), {}, fuel, true, 0.65);
}

// Apply `addLayer` to each record in `fuels`
cropColor.keys().getInfo().map(addLayer);

Sample Code: https://code.earthengine.google.com/?scriptPath=users/sat-io/awesome-gee-catalog-examples:agriculture-vegetation-forestry/GLOBAL-CROP-PRODUCTION-TILLAGE-PRACTICES

Property Mapping

Property GEE property
Author author
Journal journal
Year year
Site country site_country
Location location
Latitude latitude
Longitude longitude
Soil information recorded in the paper soil_from_paper
pH (surface layer) pH_surface_layer
Replications in experiment replications_exp
Crop crop
Initial year of NT practice ( or first year of experiment if missing) init_yr_nt
Sowing year sowing_year
Harvest year harvest_year
Years since NT started (yrs) yrs_from_nt
Crop growing season recorded in the paper cgsp
Crop rotation with at least 3 crops involved in CT crit
Crop rotation with at least 3 crops involved in NT crint
Crop sequence (details) c_seq
Cover crop before sowing cc_bf_sowing
Soil cover in CT soil_cover_ct
Soil cover in NT soil_cover_nt
Residue management of previous crop in CT (details) rm_ct
Residue management of previous crop in NT (details) rm_nt
Weed and pest control CT wp_ct
Weed and pest control NT wp_nt
Weed and pest control CT (details) wpc_ct
Weed and pest control NT (details) wpc_nt
Fertilization CT ft_ct
Fertilization NT ft_nt
N input n_inp
N input rates with the unit kg N ha-1 (details) n_inp_unit
Field fertilization (details) fft
Irrigation CT i_ct
Irrigation NT i_nt
Water applied in CT w_ct
Water applied in NT w_nt
Other information other
Yield of CT yield_ct
Yield of NT yield_nt
Relative yield change rel_yl_chg
Yield increase with NT yl_inc_nt
Outlier of CT outlier_ct
Outlier of NT outlier_nt
Sowing month sw_month
Harvesting month hv_month
P P
E E
PB PB
you you
Tmax Tmax
Tmin Tmin
ST ST

License

This work is licensed under the Creative Commons Attribution 4.0 International License (Creative Commons — Attribution 4.0 International — CC BY 4.0). Users are free to use, copy, distribute, transmit, and adapt the work for commercial and non-commercial purposes, without restriction, as long as clear attribution of the source is provided.

Created by: Yang Su et al.

Curated by: Samapriya Roy

Keywords: Conservation agriculture, Conventional tillage, crop yield, No tillage, No-till

Last updated: 2021-08-30

 

Guess you like

Origin blog.csdn.net/qq_31988139/article/details/130559802