[Notes] 5. The concept of circular convolution and its calculation

circular convolution

(1) The length of the linear convolution of the finite length sequence is equal to the sum of the lengths of the two sequences minus one ( N 1 + N 2 − 1 N_1+N_2-1N1+N21)

x 1 ( n ) and x 2 ( n ) x_1(n) \ and \ x_2(n)x1( n ) and x  2( n ) LL_Circular convolution of point L :

  • Put x 1 ( n ) and x 2 ( n ) x_1(n) \ and \ x_2(n)x1( n ) and x  2( n ) are both extended toLLSequence of L points, i.e. zero padding
  • Then L-point circular convolution is: y ( n ) = [ ∑ m = 0 L − 1 x 1 ( m ) x 2 ( ( n − m ) ) L ] RL ( n ) = [ ∑ m = 0 L − 1 x 1 ( m ) x 2 ( ( n + r L − m ) ) L ] RL ( n ) y(n) = [\sum_{m=0}^{L-1}x_1(m)x_2((nm ))_L]R_L(n)=[\sum_{m=0}^{L-1}x_1(m)x_2((n+rL-m))_L]R_L(n)and ( n )=[m=0L1x1(m)x2((nm))L]RL(n)=[m=0L1x1(m)x2((n+rLm))L]RL( n ) y ( n ) = [ ∑ r = − ∞ ∞ y 1 ( n + r L ) ] RL ( n ) , y 1 ( n ) is linear convolution y(n) = [\sum_{r=- \infty}^{\infty}y_1(n+rL)]R_L(n), \ \ \ y_1(n) is linear convolutionand ( n )=[r=y1(n+rL)]RL(n),   y1( n ) is a linear convolution soLLL point circular convolutiony ( n ) y(n)y ( n ) is linear convolutiony 1 ( n ) y_1(n)y1( n ) inLLL is the principal value sequenceof the periodic extension sequence of the period

From (1) we know that y 1 ( n ) has N 1 + N 2 − 1 y_1(n) has N_1+N_2-1y1( n ) have N1+N21 nonzero value, then the period of the continuationLLL must satisfyL ≥ N 1 + N 2 − 1 L \geq N_1 +N_2 -1LN1+N21
At this time, the continuation of each period will not overlap,y ( n ) y(n)The firstN 1 + N 2 − 1 of y ( n ) N_1+N_2-1N1+N21 value is exactlyy 1 ( n ) y_1(n)y1All non-zero values ​​of ( n )

Conclusion : If L ≥ N 1 + N 2 − 1 L \geq N_1 +N_2 -1LN1+N21 , L-point circular convolution can represent linear convolution, and the mathematical expression is as follows

example:


Guess you like

Origin blog.csdn.net/m0_52910424/article/details/127651762