Tensorflow-CNN applied to MNIST dataset classification

Code:

import tensorflow as tf
from tensorflow.examples.tutorials.mnist import input_data

mnist = input_data.read_data_sets('MNIST_data/', one_hot=True)

operation result:

Extracting MNISt_data/train-images-idx3-ubyte.gz
Extracting MNISt_data/train-labels-idx1-ubyte.gz
Extracting MNISt_data/t10k-images-idx3-ubyte.gz
Extracting MNISt_data/t10k-labels-idx1-ubyte.gz

Code:

# size of each batch
batch_size = 100
# Calculate how many batches there are
n_batch = mnist.train.num_examples // batch_size

#Parameter summary
def variable_summaries(var):
    with tf.name_scope('summaries'):
        mean = tf.reduce_mean(var)
        tf.summary.scalar('mean', mean)#average
        with tf.name_scope('stddev'):
            stddev = tf.sqrt(tf.reduce_mean(tf.square(var - mean)))
        tf.summary.scalar('stddev', stddev)#标准差
        tf.summary.scalar('max', tf.reduce_max(var))#maximum
        tf.summary.scalar('min', tf.reduce_min(var))#minimum
        tf.summary.histogram('histogram', var)#histogram

#initialize weights
def weight_variable(shape,name):
    initial = tf.truncated_normal(shape,stddev=0.1)#Generate a truncated normal distribution
    return tf.Variable(initial,name=name)

#initialize bias
def bias_variable(shape,name):
    initial = tf.constant(0.1,shape=shape)
    return tf.Variable(initial,name=name)

# convolutional layer
def conv2d(x,W):
    #x input tensor of shape `[batch, in_height, in_width, in_channels]`
    #W filter / kernel tensor of shape [filter_height, filter_width, in_channels, out_channels]
    #`strides[0] = strides[3] = 1`. strides[1] represents the step size in the x direction, and strides[2] represents the step size in the y direction
    #padding: A `string` from: `"SAME", "VALID"`
    return tf.nn.conv2d(x,W,strides=[1,1,1,1],padding='SAME')

#pooling layer
def max_pool_2x2(x):
    #ksize [1,x,y,1]
    return tf.nn.max_pool(x,ksize=[1,2,2,1],strides=[1,2,2,1],padding='SAME')

#Namespaces
with tf.name_scope('input'):
    #Define two placeholders
    x = tf.placeholder(tf.float32,[None,784],name='x-input')
    y = tf.placeholder(tf.float32,[None,10],name='y-input')
    with tf.name_scope('x_image'):
        #Change the format of x to a 4D vector [batch, in_height, in_width, in_channels]`
        x_image = tf.reshape(x,[-1,28,28,1],name='x_image')


with tf.name_scope('Conv1'):
    #Initialize the weights and biases of the first convolutional layer
    with tf.name_scope('W_conv1'):
        W_conv1 = weight_variable([5,5,1,32],name='W_conv1')#5*5 sampling window, 32 convolution kernels extract features from 1 plane
    with tf.name_scope('b_conv1'):  
        b_conv1 = bias_variable([32],name='b_conv1')#A bias value for each convolution kernel

    #Convolve x_image with the weight vector, add the bias value, and then apply it to the relu activation function
    with tf.name_scope('conv2d_1'):
        conv2d_1 = conv2d(x_image,W_conv1) + b_conv1
    with tf.name_scope('relu'):
        h_conv1 = tf.nn.relu(conv2d_1)
    with tf.name_scope('h_pool1'):
        h_pool1 = max_pool_2x2(h_conv1)#进行max-pooling

with tf.name_scope('Conv2'):
    #Initialize the weights and biases of the second convolutional layer
    with tf.name_scope('W_conv2'):
        W_conv2 = weight_variable([5,5,32,64],name='W_conv2')#5*5 sampling window, 64 convolution kernels extract features from 32 planes
    with tf.name_scope('b_conv2'):  
        b_conv2 = bias_variable([64],name='b_conv2')#A bias value for each convolution kernel

    #Convolve h_pool1 with the weight vector, add the bias value, and then apply it to the relu activation function
    with tf.name_scope('conv2d_2'):
        conv2d_2 = conv2d(h_pool1,W_conv2) + b_conv2
    with tf.name_scope('relu'):
        h_conv2 = tf.nn.relu(conv2d_2)
    with tf.name_scope('h_pool2'):
        h_pool2 = max_pool_2x2(h_conv2)# for max-pooling

The image of #28*28 is still 28*28 after the first convolution, and becomes 14*14 after the first pooling
#After the second convolution, it is 14*14, and after the second pooling, it becomes 7*7
#After entering the above operation, get 64 7*7 planes

with tf.name_scope('fc1'):
    #Initialize the weights of the first fully connected layer
    with tf.name_scope('W_fc1'):
        W_fc1 = weight_variable([7*7*64,1024],name='W_fc1')#The last field has 7*7*64 neurons, and the fully connected layer has 1024 neurons
    with tf.name_scope('b_fc1'):
        b_fc1 = bias_variable([1024],name='b_fc1')#1024 nodes

    # Flatten the output of pooling layer 2 to 1 dimension
    with tf.name_scope('h_pool2_flat'):
        h_pool2_flat = tf.reshape(h_pool2,[-1,7*7*64],name='h_pool2_flat')
    # Find the output of the first fully connected layer
    with tf.name_scope('wx_plus_b1'):
        wx_plus_b1 = tf.matmul(h_pool2_flat,W_fc1) + b_fc1
    with tf.name_scope('relu'):
        h_fc1 = tf.nn.relu(wx_plus_b1)

    #keep_prob is used to represent the output probability of the neuron
    with tf.name_scope('keep_prob'):
        keep_prob = tf.placeholder(tf.float32,name='keep_prob')
    with tf.name_scope('h_fc1_drop'):
        h_fc1_drop = tf.nn.dropout(h_fc1,keep_prob,name='h_fc1_drop')

with tf.name_scope('fc2'):
    #Initialize the second fully connected layer
    with tf.name_scope('W_fc2'):
        W_fc2 = weight_variable([1024,10],name='W_fc2')
    with tf.name_scope('b_fc2'):    
        b_fc2 = bias_variable([10],name='b_fc2')
    with tf.name_scope('wx_plus_b2'):
        wx_plus_b2 = tf.matmul(h_fc1_drop,W_fc2) + b_fc2
    with tf.name_scope('softmax'):
        #Calculate output
        prediction = tf.nn.softmax(wx_plus_b2)

#Cross entropy cost function
with tf.name_scope('cross_entropy'):
    cross_entropy = tf.reduce_mean(tf.nn.softmax_cross_entropy_with_logits(labels=y,logits=prediction),name='cross_entropy')
    tf.summary.scalar('cross_entropy',cross_entropy)
    
#Optimize with AdamOptimizer
with tf.name_scope('train'):
    train_step = tf.train.AdamOptimizer(1e-4).minimize(cross_entropy)

# find the accuracy
with tf.name_scope('accuracy'):
    with tf.name_scope('correct_prediction'):
        #The result is stored in a boolean list
        correct_prediction = tf.equal(tf.argmax(prediction,1),tf.argmax(y,1))#argmax returns the position of the largest value in the one-dimensional tensor
    with tf.name_scope('accuracy'):
        # find the accuracy
        accuracy = tf.reduce_mean(tf.cast(correct_prediction,tf.float32))
        tf.summary.scalar('accuracy',accuracy)
        
#Merge all summary
merged = tf.summary.merge_all()

with tf.Session() as sess:
    sess.run(tf.global_variables_initializer())
    train_writer = tf.summary.FileWriter('logs/train',sess.graph)
    test_writer = tf.summary.FileWriter('logs/test',sess.graph)
    for i in range(1001):
        #train model
        batch_xs,batch_ys =  mnist.train.next_batch(batch_size)
        sess.run(train_step,feed_dict={x:batch_xs,y:batch_ys,keep_prob:0.5})
        #Record the parameters of the training set calculation
        summary = sess.run(merged,feed_dict={x:batch_xs,y:batch_ys,keep_prob:1.0})
        train_writer.add_summary(summary,i)
        #Record the parameters of the test set calculation
        batch_xs,batch_ys =  mnist.test.next_batch(batch_size)
        summary = sess.run(merged,feed_dict={x:batch_xs,y:batch_ys,keep_prob:1.0})
        test_writer.add_summary(summary,i)
    
        if i%100==0:
            test_acc = sess.run(accuracy,feed_dict={x:mnist.test.images,y:mnist.test.labels,keep_prob:1.0})
            train_acc = sess.run(accuracy,feed_dict={x:mnist.train.images[:10000],y:mnist.train.labels[:10000],keep_prob:1.0})
            print ("Iter " + str(i) + ", Testing Accuracy= " + str(test_acc) + ", Training Accuracy= " + str(train_acc))

operation result:

Iter 0, Testing Accuracy= 0.0958, Training Accuracy= 0.0985
Iter 100, Testing Accuracy= 0.5912, Training Accuracy= 0.5964
Iter 200, Testing Accuracy= 0.8075, Training Accuracy= 0.8032
Iter 300, Testing Accuracy= 0.8582, Training Accuracy= 0.853
Iter 400, Testing Accuracy= 0.9402, Training Accuracy= 0.9359
Iter 500, Testing Accuracy= 0.9457, Training Accuracy= 0.9429
Iter 600, Testing Accuracy= 0.9537, Training Accuracy= 0.9525
Iter 700, Testing Accuracy= 0.9591, Training Accuracy= 0.9596
Iter 800, Testing Accuracy= 0.9607, Training Accuracy= 0.9578
Iter 900, Testing Accuracy= 0.964, Training Accuracy= 0.9615
Iter 1000, Testing Accuracy= 0.9667, Training Accuracy= 0.9652

tensorboard:



Guess you like

Origin http://43.154.161.224:23101/article/api/json?id=325793581&siteId=291194637