Principle and Implementation of Ethereum Micropayment Channel

Principle and Implementation of Ethereum Micropayment Channel

Online direct transfer requires a certain fee. If there are a large number of small transactions, the fee will become unbearable. Therefore, Ethereum has introduced a micro-transaction payment channel to solve this problem. Ethereum provides a bill payment scheme that mainly relies on a one-to-many billing system implemented by smart contracts. The general execution process of the billing system is as follows.

  • 1: The bill is generated, and a mechanism is provided to deposit the deposit on the bill.

  • 2: The transaction initiator generates a transaction ticket

  • 3: Send the ticket directly to the recipient

  • 4: The receiver cashes the bill and transfers from the contract (although a certain cashing may fail, as long as the bill exists, it can eventually be cashed).

The advantage of this kind of transaction is that any number of transactions can be sent offline, and only two on-chain transactions (deposit deposit, cash out) are required. Save on transaction fees.

code structure

.
├── api.go                             //对外接口
├── cheque.go                          //账单
├── cheque_test.go
├── contract       
│   ├── chequebook.go                  //合约go语言接口
│   ├── chequebook.sol                 //合约源码
│   ├── code.go                        //合约byte码
│   ├── mortal.sol                     //合约销毁
│   └── owned.sol                      //hebe权限
└── gencode.go                         //合约byte码生成

contract layer

The contract itself receives transfers. Users can increase the amount during initialization or later, and can transfer money to someone through the cash method. The transfer amount will be stored in the send variable.

    pragma solidity ^0.4.18;

    import "./mortal.sol";

    /// @title Chequebook for Ethereum micropayments
    /// @author Daniel A. Nagy <[email protected]>
    contract chequebook is mortal {
        // Cumulative paid amount in wei to each beneficiary
        //已经支付的 可以控制双花,防止多次兑换票据
        mapping (address => uint256) public sent;

        /// @notice Overdraft event
        event Overdraft(address deadbeat);

        // Allow sending ether to the chequebook.
        function() public payable { }

        /// @notice Cash cheque
        ///
        /// @param beneficiary beneficiary address
        /// @param amount cumulative amount in wei
        /// @param sig_v signature parameter v
        /// @param sig_r signature parameter r
        /// @param sig_s signature parameter s
        /// The digital signature is calculated on the concatenated triplet of contract address, beneficiary address and cumulative amount
        function cash(address beneficiary, uint256 amount, uint8 sig_v, bytes32 sig_r, bytes32 sig_s) public {
            // Check if the cheque is old.
            // Only cheques that are more recent than the last cashed one are considered.
            require(amount > sent[beneficiary]);
            // Check the digital signature of the cheque.
            bytes32 hash = keccak256(address(this), beneficiary, amount);
            require(owner == ecrecover(hash, sig_v, sig_r, sig_s));
            // Attempt sending the difference between the cumulative amount on the cheque
            // and the cumulative amount on the last cashed cheque to beneficiary.
            uint256 diff = amount - sent[beneficiary];
            if (diff <= this.balance) {
                // update the cumulative amount before sending
                sent[beneficiary] = amount;
                beneficiary.transfer(diff);
            } else {
                // Upon failure, punish owner for writing a bounced cheque.
                // owner.sendToDebtorsPrison();
                Overdraft(owner);
                // Compensate beneficiary.
                selfdestruct(beneficiary);
            }
        }
    }

payment layer

The bill saves the location of the ledger, the bookkeeper, the owner, etc.

    // Chequebook can create and sign cheques from a single contract to multiple beneficiaries.
    // It is the outgoing payment handler for peer to peer micropayments.
    type Chequebook struct {
        path     string                      // path to chequebook file
        prvKey   *ecdsa.PrivateKey           // private key to sign cheque with
        lock     sync.Mutex                  //
        backend  Backend                     // blockchain API
        quit     chan bool                   // when closed causes autodeposit to stop
        owner    common.Address              // owner address (derived from pubkey)
        contract *contract.Chequebook        // abigen binding
        session  *contract.ChequebookSession // abigen binding with Tx Opts

        // persisted fields
        balance      *big.Int                    // not synced with blockchain
        contractAddr common.Address              // contract address
        sent         map[common.Address]*big.Int //tallies for beneficiaries

        txhash    string   // tx hash of last deposit tx
        threshold *big.Int // threshold that triggers autodeposit if not nil
        buffer    *big.Int // buffer to keep on top of balance for fork protection

        log log.Logger // contextual logger with the contract address embedded
    }

Notes: contract location, recipient, amount, signature

    type Cheque struct {
        Contract    common.Address // address of chequebook, needed to avoid cross-contract submission
        Beneficiary common.Address
        Amount      *big.Int // cumulative amount of all funds sent
        Sig         []byte   // signature Sign(Keccak256(contract, beneficiary, amount), prvKey)
    }

ticket generation

Generate a payment record, return a signed bill, and charge it by using this bill to withdraw money from the contract.

    // Issue creates a cheque signed by the chequebook owner's private key. The
    // signer commits to a contract (one that they own), a beneficiary and amount.
    func (self *Chequebook) Issue(beneficiary common.Address, amount *big.Int) (ch *Cheque, err error) {
        defer self.lock.Unlock()
        self.lock.Lock()

        if amount.Sign() <= 0 {
            return nil, fmt.Errorf("amount must be greater than zero (%v)", amount)
        }
        if self.balance.Cmp(amount) < 0 {
            err = fmt.Errorf("insufficient funds to issue cheque for amount: %v. balance: %v", amount, self.balance)
        } else {
            var sig []byte
            sent, found := self.sent[beneficiary]
            if !found {
                sent = new(big.Int)
                self.sent[beneficiary] = sent
            }
            sum := new(big.Int).Set(sent)
            sum.Add(sum, amount)

            sig, err = crypto.Sign(sigHash(self.contractAddr, beneficiary, sum), self.prvKey)
            if err == nil {
                ch = &Cheque{
                    Contract:    self.contractAddr,
                    Beneficiary: beneficiary,
                    Amount:      sum,
                    Sig:         sig,
                }
                sent.Set(sum)
                self.balance.Sub(self.balance, amount) // subtract amount from balance
            }
        }

        // 账单余额少于阈值,自动补充.
        if self.threshold != nil {
            if self.balance.Cmp(self.threshold) < 0 {
                send := new(big.Int).Sub(self.buffer, self.balance)
                self.deposit(send)
            }
        }

        return
    }

deposit amount

    func (self *Chequebook) Deposit(amount *big.Int) (string, error) {
        defer self.lock.Unlock()
        self.lock.Lock()
        return self.deposit(amount)
    }

    func (self *Chequebook) deposit(amount *big.Int) (string, error) {
        // since the amount is variable here, we do not use sessions
        depositTransactor := bind.NewKeyedTransactor(self.prvKey)
        depositTransactor.Value = amount
        chbookRaw := &contract.ChequebookRaw{Contract: self.contract}
        //转入金额
        tx, err := chbookRaw.Transfer(depositTransactor)
        if err != nil {
            self.log.Warn("Failed to fund chequebook", "amount", amount, "balance", self.balance, "target", self.buffer, "err", err)
            return "", err
        }
        // assume that transaction is actually successful, we add the amount to balance right away
        self.balance.Add(self.balance, amount)
        self.log.Trace("Deposited funds to chequebook", "amount", amount, "balance", self.balance, "target", self.buffer)
        return tx.Hash().Hex(), nil
    }

exchange note

// Cash is a convenience method to cash any cheque.
func (self *Chequebook) Cash(ch *Cheque) (txhash string, err error) {
	return ch.Cash(self.session)
}

// Cash cashes the cheque by sending an Ethereum transaction.
func (self *Cheque) Cash(session *contract.ChequebookSession) (string, error) {
	v, r, s := sig2vrs(self.Sig)
    //调用合约的cash方法 提取代币
	tx, err := session.Cash(self.Beneficiary, self.Amount, v, r, s)
	if err != nil {
		return "", err
	}
	return tx.Hash().Hex(), nil
}

Other interfaces

OutBox: It is used to issue bills in the peer-to-peer network, and provides interfaces such as margin deposit, bill issuance, and automatic deposit of margin.

    type Outbox struct {
        chequeBook  *Chequebook
        beneficiary common.Address
    }

    // Issue creates cheque.
    func (self *Outbox) Issue(amount *big.Int) (swap.Promise, error) {
        return self.chequeBook.Issue(self.beneficiary, amount)
    }

    // AutoDeposit enables auto-deposits on the underlying chequebook.
    func (self *Outbox) AutoDeposit(interval time.Duration, threshold, buffer *big.Int) {
        self.chequeBook.AutoDeposit(interval, threshold, buffer)
    }

InBox: It is used for bill exchange in the electricity-to-point network, and provides interface functions of direct exchange, regular exchange, and delayed exchange.

    // Inbox can deposit, verify and cash cheques from a single contract to a single
    // beneficiary. It is the incoming payment handler for peer to peer micropayments.
    type Inbox struct {
        lock        sync.Mutex
        contract    common.Address              // peer's chequebook contract
        beneficiary common.Address              // local peer's receiving address
        sender      common.Address              // local peer's address to send cashing tx from
        signer      *ecdsa.PublicKey            // peer's public key
        txhash      string                      // tx hash of last cashing tx
        session     *contract.ChequebookSession // abi contract backend with tx opts
        quit        chan bool                   // when closed causes autocash to stop
        maxUncashed *big.Int                    // threshold that triggers autocashing
        cashed      *big.Int                    // cumulative amount cashed
        cheque      *Cheque                     // last cheque, nil if none yet received
        log         log.Logger                  // contextual logger with the contract address embedded
    }

    // Cash attempts to cash the current cheque.
    func (self *Inbox) Cash() (txhash string, err error) {
        if self.cheque != nil {
            txhash, err = self.cheque.Cash(self.session)
            self.log.Trace("Cashing in chequebook cheque", "amount", self.cheque.Amount, "beneficiary", self.beneficiary)
            self.cashed = self.cheque.Amount
        }
        return
    }

Guess you like

Origin http://43.154.161.224:23101/article/api/json?id=325301541&siteId=291194637