Interview questions related to asynchronous message processing mechanism - detailed explanation of handlerThread interview questions

handlerThread generates the background:

Opening Thread sub-threads for time-consuming operations, creating and destroying threads multiple times consumes system resources.

What is handlerThread?

handler + thread + looper

It is actually a thread, but it is different from Thread. It is a thread with a looper inside.

Features of handlerThread:

  • It is essentially a thread, which inherits Thread.
  • It has its own internal Looper object that can do looper loops.
  • By getting the looper object of HandlerThread and passing it to the Handler object, asynchronous tasks can be performed in the handleMessage method .
  • The advantage is that it will not block, which reduces the loss of performance. The disadvantage is that it cannot perform multi-task processing at the same time, and needs to wait for processing, and the processing efficiency is low.
  • Unlike thread pools that focus on concurrency, HandlerThread is a serial queue [that is, tasks must be executed one by one, and only the next one will be executed after one is executed], and there is only one thread behind HandlerThread.

handlerThread source code analysis:

First paste its complete source code:

/**
 * Handy class for starting a new thread that has a looper. The looper can then be
 * used to create handler classes. Note that start() must still be called.
 */
public class HandlerThread extends Thread {
    int mPriority;
    int mTid = -1;
    Looper mLooper;

    public HandlerThread(String name) {
        super(name);
        mPriority = Process.THREAD_PRIORITY_DEFAULT;
    }
    
    /**
     * Constructs a HandlerThread.
     * @param name
     * @param priority The priority to run the thread at. The value supplied must be from 
     * {@link android.os.Process} and not from java.lang.Thread.
     */
    public HandlerThread(String name, int priority) {
        super(name);
        mPriority = priority;
    }
    
    /**
     * Call back method that can be explicitly overridden if needed to execute some
     * setup before Looper loops.
     */
    protected void onLooperPrepared() {
    }

    @Override
    public void run() {
        mTid = Process.myTid();
        Looper.prepare();
        synchronized (this) {
            mLooper = Looper.myLooper();
            notifyAll();
        }
        Process.setThreadPriority(mPriority);
        onLooperPrepared();
        Looper.loop();
        mTid = -1 ;
    }
    
    /**
     * This method returns the Looper associated with this thread. If this thread not been started
     * or for any reason is isAlive() returns false, this method will return null. If this thread
     * has been started, this method will block until the looper has been initialized.  
     * @return The looper.
     */
    public Looper getLooper() {
        if (!isAlive()) {
            return null;
        }
        
        // If the thread has been started, wait until the looper has been created.
        synchronized (this) {
            while (isAlive() && mLooper == null) {
                try {
                    wait();
                } catch (InterruptedException e) {
                }
            }
        }
        return mLooper;
    }

    /**
     * Quits the handler thread's looper.
     * <p>
     * Causes the handler thread's looper to terminate without processing any
     * more messages in the message queue.
     * </p><p>
     * Any attempt to post messages to the queue after the looper is asked to quit will fail.
     * For example, the {@link Handler#sendMessage(Message)} method will return false.
     * </p><p class="note">
     * Using this method may be unsafe because some messages may not be delivered
     * before the looper terminates.  Consider using {@link #quitSafely} instead to ensure
     * that all pending work is completed in an orderly manner.
     * </p>
     *
     * @return True if the looper looper has been asked to quit or false if the
     * thread had not yet started running.
     *
     * @see #quitSafely
     */
    public boolean quit() {
        Looper looper = getLooper();
        if (looper != null) {
            looper.quit();
            return true;
        }
        return false;
    }

    /**
     * Quits the handler thread's looper safely.
     * <p>
     * Causes the handler thread's looper to terminate as soon as all remaining messages
     * in the message queue that are already due to be delivered have been handled.
     * Pending delayed messages with due times in the future will not be delivered.
     * </p><p>
     * Any attempt to post messages to the queue after the looper is asked to quit will fail.
     * For example, the {@link Handler#sendMessage(Message)} method will return false.
     * </p><p>
     * If the thread has not been started or has finished (that is if
     * {@link #getLooper} returns null), then false is returned.
     * Otherwise the looper is asked to quit and true is returned.
     * </p>
     *
     * @return True if the looper looper has been asked to quit or false if the
     * thread had not yet started running.
     */ 
    public  boolean quitSafely() {
        Looper looper = getLooper();
        if (looper != null) {
            looper.quitSafely();
            return true;
        }
        return false;
    }

    /**
     * Returns the identifier of this thread. See Process.myTid().
     */
    public int getThreadId() {
        return mTid;
    }
}

The above is its complete source code, which is quite small, but the design is very delicate. Let's take a look at its class annotations:

Among them, it inherits Thread, which is obviously a thread, and then analyzes it:

You can find out by the following code:

Then take a look at the core run() method of the thread:

 Finally execute the loop method:

And look at the getLooper() method:

Finally, let's take a look at the methods related to exit:

Among them, the efficiency of safe exit is definitely not as high as that of direct exit.

Guess you like

Origin http://43.154.161.224:23101/article/api/json?id=325038667&siteId=291194637