Vision_transformer combat summary: a very simple VIT introductory tutorial, don't miss it

Summary

This example extracts some data from the plant seedling dataset as a dataset. There are 12 categories in the dataset. It demonstrates how to use the pytorch version of the VIT image classification model to implement the classification task.

Through this article you will learn:

1. How to build the VIT model?

2. How to generate the dataset?

3. How to use Cutout data enhancement?

4. How to use Mixup data enhancement.

5. How to implement training and validation.

6. How to use cosine annealing to adjust the learning rate?

7. Two ways of writing predictions.

The code of this article has not been modified too much, it is relatively simple and easy to understand.

Project structure

VIT_demo
├─models
│  └─vision_transformer.py
├─data
│  ├─Black-grass
│  ├─Charlock
│  ├─Cleavers
│  ├─Common Chickweed
│  ├─Common wheat
│  ├─Fat Hen
│  ├─Loose Silky-bent
│  ├─Maize
│  ├─Scentless Mayweed
│  ├─Shepherds Purse
│  ├─Small-flowered Cranesbill
│  └─Sugar beet
├─mean_std.py
├─makedata.py
├─train.py
├─test1.py
└─test.py

mean_std.py: Calculates mean and std values.

makedata.py: Generate the dataset.

Calculate mean and std

In order to make the model converge more quickly, we need to calculate the value of mean and std, create a new mean_std.py, and insert the code:

from torchvision.datasets import ImageFolder
import torch
from torchvision import transforms

def get_mean_and_std(train_data):
    train_loader = torch.utils.data.DataLoader(
        train_data, batch_size=1, shuffle=False, num_workers=0,
        pin_memory=True)
    mean = torch.zeros(3)
    std = torch.zeros(3)
    for X, _ in train_loader:
        for d in range(3):
            mean[d] += X[:, d, :, :].mean()
            std[d] += X[:, d, :, :].std()
    mean.div_(len(train_data))
    std.div_(len(train_data))
    return list(mean.numpy()), list(std.numpy())


if __name__ == '__main__':
    train_dataset = ImageFolder(root=r'data1', transform=transforms.ToTensor())
    print(get_mean_and_std(train_dataset))

Dataset structure:

image-20220221153058619

operation result:

([0.3281186, 0.28937867, 0.20702125], [0.09407319, 0.09732835, 0.106712654])

Record this result and use it later!

Generate dataset

The structure of the dataset we have organized for image classification is like this

data
├─Black-grass
├─Charlock
├─Cleavers
├─Common Chickweed
├─Common wheat
├─Fat Hen
├─Loose Silky-bent
├─Maize
├─Scentless Mayweed
├─Shepherds Purse
├─Small-flowered Cranesbill
└─Sugar beet

The default loading method of pytorch and keras is ImageNet dataset format, the format is

├─data
│  ├─val
│  │   ├─Black-grass
│  │   ├─Charlock
│  │   ├─Cleavers
│  │   ├─Common Chickweed
│  │   ├─Common wheat
│  │   ├─Fat Hen
│  │   ├─Loose Silky-bent
│  │   ├─Maize
│  │   ├─Scentless Mayweed
│  │   ├─Shepherds Purse
│  │   ├─Small-flowered Cranesbill
│  │   └─Sugar beet
│  └─train
│      ├─Black-grass
│      ├─Charlock
│      ├─Cleavers
│      ├─Common Chickweed
│      ├─Common wheat
│      ├─Fat Hen
│      ├─Loose Silky-bent
│      ├─Maize
│      ├─Scentless Mayweed
│      ├─Shepherds Purse
│      ├─Small-flowered Cranesbill
│      └─Sugar beet

Add a new format conversion script makedata.py, insert the code:

import glob
import os
import shutil

image_list=glob.glob('data1/*/*.png')
print(image_list)
file_dir='data'
if os.path.exists(file_dir):
    print('true')
    #os.rmdir(file_dir)
    shutil.rmtree(file_dir)#删除再建立
    os.makedirs(file_dir)
else:
    os.makedirs(file_dir)

from sklearn.model_selection import train_test_split

trainval_files, val_files = train_test_split(image_list, test_size=0.3, random_state=42)

train_dir='train'
val_dir='val'
train_root=os.path.join(file_dir,train_dir)
val_root=os.path.join(file_dir,val_dir)
for file in trainval_files:
    file_class=file.replace("\\","/").split('/')[-2]
    file_name=file.replace("\\","/").split('/')[-1]
    file_class=os.path.join(train_root,file_class)
    if not os.path.isdir(file_class):
        os.makedirs(file_class)
    shutil.copy(file, file_class + '/' + file_name)

for file in val_files:
    file_class=file.replace("\\","/").split('/')[-2]
    file_name=file.replace("\\","/").split('/')[-1]
    file_class=os.path.join(val_root,file_class)
    if not os.path.isdir(file_class):
        os.makedirs(file_class)
    shutil.copy(file, file_class + '/' + file_name)

Data Augmentation Cutout and Mixup

In order to improve the score, I added two enhancement methods, Cutout and Mixup, to the code. Implementing these two enhancements requires torchtoolbox to be installed. Installation command:

pip install torchtoolbox

Cutout implementation, in transforms.

from torchtoolbox.transform import Cutout

# 数据预处理

transform = transforms.Compose([
    transforms.Resize((224, 224)),
    Cutout()

])

Mixup implementation, in the train method. Need to import packages: from torchtoolbox.tools import mixup_data, mixup_criterion

    for batch_idx, (data, target) in enumerate(train_loader):
        data, target = data.to(device, non_blocking=True), target.to(device, non_blocking=True)
        data, labels_a, labels_b, lam = mixup_data(data, target, alpha)
        optimizer.zero_grad()
        output = model(data)
        loss = mixup_criterion(criterion, output, labels_a, labels_b, lam)
        loss.backward()
        optimizer.step()
        print_loss = loss.data.item()

Import the library used by the project

import torch.optim as optim
import torch
import torch.nn as nn
import torch.nn.parallel
import torch.utils.data
import torch.utils.data.distributed
import torchvision.transforms as transforms

import torchvision.datasets as datasets
from models.vision_transformer import deit_tiny_patch16_224
from torchtoolbox.tools import mixup_data, mixup_criterion
from torchtoolbox.transform import Cutout

Set global parameters

Set parameters such as learning rate, BatchSize, epoch, etc. to determine whether there is a GPU in the environment, and if not, use the CPU. GPU is recommended, CPU is too slow.

# 设置全局参数
modellr = 1e-4
BATCH_SIZE = 16
EPOCHS = 300
DEVICE = torch.device('cuda' if torch.cuda.is_available() else 'cpu')

Image preprocessing and enhancement

The data processing is relatively simple, adding Cutout, doing Resize and normalization. Write the values ​​of mean and std obtained above in transforms.Normalize.

# 数据预处理
transform = transforms.Compose([
    transforms.Resize((224, 224)),
    Cutout(),
    transforms.ToTensor(),
    transforms.Normalize([0.3281186, 0.28937867, 0.20702125], [0.09407319, 0.09732835, 0.106712654])

])
transform_test = transforms.Compose([
    transforms.Resize((224, 224)),
    transforms.ToTensor(),
    transforms.Normalize([0.3281186, 0.28937867, 0.20702125], [0.09407319, 0.09732835, 0.106712654])
])

read data

Use pytorch to read the data by default, and then print out dataset_train.class_to_idx, which is used for prediction.

# 读取数据
dataset_train = datasets.ImageFolder('data/train', transform=transform)
dataset_test = datasets.ImageFolder("data/val", transform=transform_test)
print(dataset_train.class_to_idx)
# 导入数据
train_loader = torch.utils.data.DataLoader(dataset_train, batch_size=BATCH_SIZE, shuffle=True)
test_loader = torch.utils.data.DataLoader(dataset_test, batch_size=BATCH_SIZE, shuffle=False)

Result of class_to_idx:

{‘Black-grass’: 0, ‘Charlock’: 1, ‘Cleavers’: 2, ‘Common Chickweed’: 3, ‘Common wheat’: 4, ‘Fat Hen’: 5, ‘Loose Silky-bent’: 6, ‘Maize’: 7, ‘Scentless Mayweed’: 8, ‘Shepherds Purse’: 9, ‘Small-flowered Cranesbill’: 10, ‘Sugar beet’: 11}

Set up the model

  • Set the loss function to nn.CrossEntropyLoss().
  • Set the model to deit_tiny_patch16_224, pretrain to true, and num_classes to 12.
  • The optimizer is set to adam.
  • The learning rate adjustment strategy is chosen as cosine annealing.

Model file from: https://github.com/rwightman/pytorch-image-models/blob/master/timm/models/vision_transformer.py

I made changes on the basis of this script, currently the pre-trained model of .pth can be loaded, but the pre-trained model of .npz cannot be loaded.

# 实例化模型并且移动到GPU
criterion = nn.CrossEntropyLoss()
model_ft = deit_tiny_patch16_224(pretrained=True)
print(model_ft)
num_ftrs = model_ft.head.in_features
model_ft.head = nn.Linear(num_ftrs, 12,bias=True)
nn.init.xavier_uniform_(model_ft.head.weight)
model_ft.to(DEVICE)
print(model_ft)
# 选择简单暴力的Adam优化器,学习率调低
optimizer = optim.Adam(model_ft.parameters(), lr=modellr)
cosine_schedule = optim.lr_scheduler.CosineAnnealingLR(optimizer=optimizer,T_max=20,eta_min=1e-9)

Define training and validation functions

# 定义训练过程
alpha=0.2
def train(model, device, train_loader, optimizer, epoch):
    model.train()
    sum_loss = 0
    total_num = len(train_loader.dataset)
    print(total_num, len(train_loader))
    for batch_idx, (data, target) in enumerate(train_loader):
        data, target = data.to(device, non_blocking=True), target.to(device, non_blocking=True)
        data, labels_a, labels_b, lam = mixup_data(data, target, alpha)
        optimizer.zero_grad()
        output = model(data)
        loss = mixup_criterion(criterion, output, labels_a, labels_b, lam)
        loss.backward()
        optimizer.step()
        lr = optimizer.state_dict()['param_groups'][0]['lr']
        print_loss = loss.data.item()
        sum_loss += print_loss
        if (batch_idx + 1) % 10 == 0:
            print('Train Epoch: {} [{}/{} ({:.0f}%)]\tLoss: {:.6f}\tLR:{:.9f}'.format(
                epoch, (batch_idx + 1) * len(data), len(train_loader.dataset),
                       100. * (batch_idx + 1) / len(train_loader), loss.item(),lr))
    ave_loss = sum_loss / len(train_loader)
    print('epoch:{},loss:{}'.format(epoch, ave_loss))

ACC=0
# 验证过程
def val(model, device, test_loader):
    global ACC
    model.eval()
    test_loss = 0
    correct = 0
    total_num = len(test_loader.dataset)
    print(total_num, len(test_loader))
    with torch.no_grad():
        for data, target in test_loader:
            data, target = Variable(data).to(device), Variable(target).to(device)
            output = model(data)
            loss = criterion(output, target)
            _, pred = torch.max(output.data, 1)
            correct += torch.sum(pred == target)
            print_loss = loss.data.item()
            test_loss += print_loss
        correct = correct.data.item()
        acc = correct / total_num
        avgloss = test_loss / len(test_loader)
        print('\nVal set: Average loss: {:.4f}, Accuracy: {}/{} ({:.0f}%)\n'.format(
            avgloss, correct, len(test_loader.dataset), 100 * acc))
        if acc > ACC:
            torch.save(model_ft, 'model_' + str(epoch) + '_' + str(round(acc, 3)) + '.pth')
            ACC = acc


# 训练

for epoch in range(1, EPOCHS + 1):
    train(model_ft, DEVICE, train_loader, optimizer, epoch)
    cosine_schedule.step()
    val(model_ft, DEVICE, test_loader)

operation result:

image-20220221155305984

test

We introduce a general method that manually loads the dataset and then makes predictions. The specific operations are as follows:

The directory where the test set is stored is as follows:
image-20220221155438924

The first step is to define the category. The order of this category corresponds to the order of categories during training. Be sure not to change the order! ! ! !

The second step is to define transforms, which can be the same as the transforms of the validation set, do not do data enhancement.

The third step is to load the model and put the model in DEVICE,

The fourth step is to read the image and predict the category of the image. Note here that the Image of the PIL library is used to read the image. Don't use cv2, transforms are not supported.

import torch.utils.data.distributed
import torchvision.transforms as transforms
from PIL import Image
from torch.autograd import Variable
import os
classes = ('Black-grass', 'Charlock', 'Cleavers', 'Common Chickweed',
           'Common wheat','Fat Hen', 'Loose Silky-bent',
           'Maize','Scentless Mayweed','Shepherds Purse','Small-flowered Cranesbill','Sugar beet')
transform_test = transforms.Compose([
         transforms.Resize((224, 224)),
        transforms.ToTensor(),
        transforms.Normalize([0.3281186, 0.28937867, 0.20702125], [0.09407319, 0.09732835, 0.106712654])
])
 
DEVICE = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
model = torch.load("model.pth")
model.eval()
model.to(DEVICE)
 
path='test/'
testList=os.listdir(path)
for file in testList:
        img=Image.open(path+file)
        img=transform_test(img)
        img.unsqueeze_(0)
        img = Variable(img).to(DEVICE)
        out=model(img)
        # Predict
        _, pred = torch.max(out.data, 1)
        print('Image Name:{},predict:{}'.format(file,classes[pred.data.item()]))

operation result:

image-20220201170551622

Full code:
https://download.csdn.net/download/hhhhhhhhhhwwwwwwwww/81737304

Guess you like

Origin blog.csdn.net/hhhhhhhhhhwwwwwwwwww/article/details/123049220