机器学习之决策树ID3算法

机器学习之ID3算法

1、信息熵

首先我们来介绍一下信息熵(entropy)的概念,它表示了信息的不确定度。
在信息论中,随机离散时间出现的概率存在着不确定性,为了衡量这种信息的不确定性,信息学之父香农引入了信息熵的概念,并给出了计算信息熵的数学公式:
在这里插入图片描述
p(i|t) 代表了节点 t 为分类 i 的概率,其中 log2 为取以 2 为底的对数。这里我们不是来介绍公式的,而是说存在一种度量,它能帮我们反映出来这个信息的不确定度。当不确定性越大时,它所包含的信息量也就越大,信息熵也就越高。

举个简单的例子,假设有2个集合:
集合1:5次去打篮球,1次不去打篮球
集合2:3次去打篮球,3次不去打篮球。

集合1计算信息熵为:
在这里插入图片描述
集合2也同理可得:
在这里插入图片描述
从上面的计算结果中可以看出,信息熵越大,纯度越低。当集合中的所有样本均匀混合时,信息熵最大,纯度最低。

2、ID3算法

ID3 算法计算的是信息增益,信息增益指的就是划分可以带来纯度的提高,信息熵的下降。它的计算公式,是父亲节点的信息熵减去所有子节点的信息熵。在计算的过程中,我们会计算每个子节点的归一化信息熵,即按照每个子节点在父节点中出现的概率,来计算这些子节点的信息熵。

所以信息增益的公式可以表示为:

在这里插入图片描述
假设有下面一个图例:
在这里插入图片描述
我们基于 ID3 的算法规则,完整地计算下我们的训练集,训练集中一共有 7 条数据,3 个打篮球,4 个不打篮球,所以根节点的信息熵是:
在这里插入图片描述
如果你将天气作为属性的划分,会有三个叶子节点 D1、D2 和 D3,分别对应的是晴天、阴天和小雨。我们用 + 代表去打篮球,- 代表不去打篮球。那么第一条记录,晴天不去打篮球,可以记为 1-,于是我们可以用下面的方式来记录 D1,D2,D3:

D1(天气 = 晴天)={1-,2-,6+}
D2(天气 = 阴天)={3+,7-}
D3(天气 = 小雨)={4+,5-}
我们先分别计算三个叶子节点的信息熵:
在这里插入图片描述
因为 D1 有 3 个记录,D2 有 2 个记录,D3 有 2 个记录,所以 D 中的记录一共是 3+2+2=7,即总数为 7。所以 D1 在 D(父节点)中的概率是 3/7,D2 在父节点的概率是 2/7,D3 在父节点的概率是 2/7。
那么作为子节点的归一化信息熵 = 3/70.918+2/71.0+2/7*1.0=0.965。

因为我们用 ID3 中的信息增益来构造决策树,所以要计算每个节点的信息增益。
天气作为属性节点的信息增益为,Gain(D , 天气)=0.985-0.965=0.020。

同理我们可以计算出其他属性作为根节点的信息增益,它们分别为 :
Gain(D , 温度)=0.128
Gain(D , 湿度)=0.020
Gain(D , 刮风)=0.020

我们能看出来温度作为属性的信息增益最大。因为 ID3 就是要将信息增益最大的节点作为父节点,这样可以得到纯度高的决策树,所以我们将温度作为根节点。

决策树状图分裂为:
在这里插入图片描述
然后我们要将上图中第一个叶节点,也就是 D1={1-,2-,3+,4+}进一步进行分裂,往下划分,计算其不同属性(天气、湿度、刮风)作为节点的信息增益,可以得到:

Gain(D , 湿度)=1
Gain(D , 天气)=1
Gain(D , 刮风)=0.3115

我们能看到湿度,或者天气为 D1 的节点都可以得到最大的信息增益,这里我们选取湿度作为节点的属性划分。同理,我们可以按照上面的计算步骤得到完整的决策树,结果如下:
在这里插入图片描述
于是我们通过 ID3 算法得到了一棵决策树。ID3 的算法规则相对简单,可解释性强。同样也存在缺陷,比如我们会发现 ID3 算法倾向于选择取值比较多的属性。这样,如果我们把“编号”作为一个属性(一般情况下不会这么做,这里只是举个例子),那么“编号”将会被选为最优属性 。但实际上“编号”是无关属性的,它对“打篮球”的分类并没有太大作用。

所以 ID3 有一个缺陷就是,有些属性可能对分类任务没有太大作用,但是他们仍然可能会被选为最优属性。这种缺陷不是每次都会发生,只是存在一定的概率。在大部分情况下,ID3 都能生成不错的决策树分类。针对可能发生的缺陷,后人提出了新的算法进行改进,也就是C4.5算法。

以上是针对决策树的ID3算法的解释,其中内容部分参照极客时间数据分析实战。小张同学在一步一步学习记录知识,希望可以帮到需要的小伙伴!!!

Guess you like

Origin blog.csdn.net/baidu_41797613/article/details/120502093