Pytorch deep learning quick start streamlined tutorial

The typical training process of a neural network is as follows:

  • Define a neural network with some learnable parameters (or weights)
  • Iterate over the input data set
  • Process input via the network
  • Calculate the loss (how far is the correct distance to output)
  • Propagate the gradient back to the network parameters
  • A simple update rule is usually used to update the weight of the network: weight = weight - learning_rate * gradient

Examples of network definitions are as follows:

import torch
import torch.nn as nn
import torch.nn.functional as F


class Net(nn.Module):

    def __init__(self):
        super(Net, self).__init__()
        # 1 input image channel, 6 output channels, 3x3 square convolution
        # kernel
        self.conv1 = nn.Conv2d(1, 6, 3)
        self.conv2 = nn.Conv2d(6, 16, 3)
        # an affine operation: y = Wx + b
        self.fc1 = nn.Linear(16 * 6 * 6, 120)  # 6*6 from image dimension
        self.fc2 = nn.Linear(120, 84)
        self.fc3 = nn.Linear(84, 10)

    def forward(self, x):
        # Max pooling over a (2, 2) window
        x = F.max_pool2d(F.relu(self.conv1(x)), (2, 2))
        # If the size is a square you can only specify a single number
        x = F.max_pool2d(F.relu(self.conv2(x)), 2)
        x = x.view(-1, self.num_flat_features(x))
        x = F.relu(self.fc1(x))
        x = F.relu(self.fc2(x))
        x = self.fc3(x)
        return x

    def num_flat_features(self, x):
        size = x.size()[1:]  # all dimensions except the batch dimension
        num_features = 1
        for s in size:
            num_features *= s
        return num_features


net = Net()
print(net)

     Generally, when you have to deal with image, text, audio or video data, you can use the standard python package that loads the data into a numpy array. Then you can convert this array to torch.*Tensor.

  • For images, Pillow, OpenCV and other software packages are useful
  • For audio, please use packages such as scipy and librosa
  • For text, raw loading based on Python or Cython, or NLTK and SpaCy is useful

      Specifically, for vision, we have created a torchvisionfile called  , which has a transformer for common data sets such as Imagenet, CIFAR10, MNIST, etc. and image data, that is, data loader  torchvision.datasetsand torch.utils.data.DataLoader.

     This provides great convenience and avoids writing boilerplate code.

Train an image classifier

We will perform the following steps in order:

  1. Use the following commands to load and standardize the CIFAR10 training and test dataset torchvision
  2. Define Convolutional Neural Network
  3. Define loss function
  4. Train the network based on the training data
  5. Test the network on test data

Use numpy to implement network examples

# -*- coding: utf-8 -*-
import numpy as np

# N is batch size; D_in is input dimension;
# H is hidden dimension; D_out is output dimension.
N, D_in, H, D_out = 64, 1000, 100, 10

# Create random input and output data
x = np.random.randn(N, D_in)
y = np.random.randn(N, D_out)

# Randomly initialize weights
w1 = np.random.randn(D_in, H)
w2 = np.random.randn(H, D_out)

learning_rate = 1e-6
for t in range(500):
    # Forward pass: compute predicted y
    h = x.dot(w1)
    h_relu = np.maximum(h, 0)
    y_pred = h_relu.dot(w2)

    # Compute and print loss
    loss = np.square(y_pred - y).sum()
    print(t, loss)

    # Backprop to compute gradients of w1 and w2 with respect to loss
    grad_y_pred = 2.0 * (y_pred - y)
    grad_w2 = h_relu.T.dot(grad_y_pred)
    grad_h_relu = grad_y_pred.dot(w2.T)
    grad_h = grad_h_relu.copy()
    grad_h[h < 0] = 0
    grad_w1 = x.T.dot(grad_h)

    # Update weights
    w1 -= learning_rate * grad_w1
    w2 -= learning_rate * grad_w2

      Numpy is a great framework, but it cannot use GPU to accelerate its numerical calculations. For modern deep neural networks, GPU usually provide 50 times or more accelerated than that , so unfortunately, numpy alone is not sufficient to achieve a modern deep learning.

       Here, we introduce the most basic PyTorch concept: Tensor . PyTorch tensors are conceptually the same as numpy arrays: tensors are n-dimensional arrays, and PyTorch provides many functions for operating on these tensors. Behind the scenes, tensors can track computational graphs and gradients, but they can also be used as general tools for scientific computing. Unlike numpy, PyTorch tensors can use GPU to accelerate their digital calculations. To run PyTorch Tensor on the GPU, you only need to convert it to a new data type. Here, we use the PyTorch tensor to adapt the two-layer network to random data. Like the numpy example above, we need to manually implement forward and reverse transmission through the network:

# -*- coding: utf-8 -*-

import torch


dtype = torch.float
device = torch.device("cpu")
# device = torch.device("cuda:0") # Uncomment this to run on GPU

# N is batch size; D_in is input dimension;
# H is hidden dimension; D_out is output dimension.
N, D_in, H, D_out = 64, 1000, 100, 10

# Create random input and output data
x = torch.randn(N, D_in, device=device, dtype=dtype)
y = torch.randn(N, D_out, device=device, dtype=dtype)

# Randomly initialize weights
w1 = torch.randn(D_in, H, device=device, dtype=dtype)
w2 = torch.randn(H, D_out, device=device, dtype=dtype)

learning_rate = 1e-6
for t in range(500):
    # Forward pass: compute predicted y
    h = x.mm(w1)
    h_relu = h.clamp(min=0)
    y_pred = h_relu.mm(w2)

    # Compute and print loss
    loss = (y_pred - y).pow(2).sum().item()
    if t % 100 == 99:
        print(t, loss)

    # Backprop to compute gradients of w1 and w2 with respect to loss
    grad_y_pred = 2.0 * (y_pred - y)
    grad_w2 = h_relu.t().mm(grad_y_pred)
    grad_h_relu = grad_y_pred.mm(w2.t())
    grad_h = grad_h_relu.clone()
    grad_h[h < 0] = 0
    grad_w1 = x.t().mm(grad_h)

    # Update weights using gradient descent
    w1 -= learning_rate * grad_w1
    w2 -= learning_rate * grad_w2

PyTorch: Tensors and autograd

      In the above example, we must manually implement the forward and backward passes of the neural network. For a small two-layer network, manual reverse transfer is not a big problem, but for a large complex network, it can quickly become very troublesome.

Fortunately, we can use automatic differentiation  to automatically calculate the back propagation in a neural network. PyTorch in  autograd package provides this function completely. When using autograd, the forward pass of the network will define a  computational graph ; the nodes in the graph are tensors, and the edges are functions that generate output tensors from input tensors. Then backpropagation is performed through this graph, and the gradient can be easily calculated. This sounds complicated, and it is very simple to use in practice. Each tensor represents a node in the calculation graph. If xis a Tensor,  x.requires_grad=Truethen x.gradanother Tensor, which holds xthe gradient relative to a scalar value. Here, we use PyTorch tensor and autograd to implement our two-layer network. Now we no longer need to manually implement reverse transmission through the network:

# -*- coding: utf-8 -*-
import torch

dtype = torch.float
device = torch.device("cpu")
# device = torch.device("cuda:0") # Uncomment this to run on GPU

# N is batch size; D_in is input dimension;
# H is hidden dimension; D_out is output dimension.
N, D_in, H, D_out = 64, 1000, 100, 10

# Create random Tensors to hold input and outputs.
# Setting requires_grad=False indicates that we do not need to compute gradients
# with respect to these Tensors during the backward pass.
x = torch.randn(N, D_in, device=device, dtype=dtype)
y = torch.randn(N, D_out, device=device, dtype=dtype)

# Create random Tensors for weights.
# Setting requires_grad=True indicates that we want to compute gradients with
# respect to these Tensors during the backward pass.
w1 = torch.randn(D_in, H, device=device, dtype=dtype, requires_grad=True)
w2 = torch.randn(H, D_out, device=device, dtype=dtype, requires_grad=True)

learning_rate = 1e-6
for t in range(500):
    # Forward pass: compute predicted y using operations on Tensors; these
    # are exactly the same operations we used to compute the forward pass using
    # Tensors, but we do not need to keep references to intermediate values since
    # we are not implementing the backward pass by hand.
    y_pred = x.mm(w1).clamp(min=0).mm(w2)

    # Compute and print loss using operations on Tensors.
    # Now loss is a Tensor of shape (1,)
    # loss.item() gets the scalar value held in the loss.
    loss = (y_pred - y).pow(2).sum()
    if t % 100 == 99:
        print(t, loss.item())

    # Use autograd to compute the backward pass. This call will compute the
    # gradient of loss with respect to all Tensors with requires_grad=True.
    # After this call w1.grad and w2.grad will be Tensors holding the gradient
    # of the loss with respect to w1 and w2 respectively.
    loss.backward()

    # Manually update weights using gradient descent. Wrap in torch.no_grad()
    # because weights have requires_grad=True, but we don't need to track this
    # in autograd.
    # An alternative way is to operate on weight.data and weight.grad.data.
    # Recall that tensor.data gives a tensor that shares the storage with
    # tensor, but doesn't track history.
    # You can also use torch.optim.SGD to achieve this.
    with torch.no_grad():
        w1 -= learning_rate * w1.grad
        w2 -= learning_rate * w2.grad

        # Manually zero the gradients after updating weights
        w1.grad.zero_()
        w2.grad.zero_()

PyTorch: Defining new autograd functions

        In PyTorch, we can easily define our own autograd operators by defining torch.autograd.Functionand implementing subclasses of forward and backwardfunctions. Then, we can call the new autograd operator like a function by constructing an instance and passing a tensor containing the input data. In this example, we define our own custom autograd function to perform ReLU nonlinearity and use it to implement our two-layer network:

# -*- coding: utf-8 -*-
import torch


class MyReLU(torch.autograd.Function):
    """
    We can implement our own custom autograd Functions by subclassing
    torch.autograd.Function and implementing the forward and backward passes
    which operate on Tensors.
    """

    @staticmethod
    def forward(ctx, input):
        """
        In the forward pass we receive a Tensor containing the input and return
        a Tensor containing the output. ctx is a context object that can be used
        to stash information for backward computation. You can cache arbitrary
        objects for use in the backward pass using the ctx.save_for_backward method.
        """
        ctx.save_for_backward(input)
        return input.clamp(min=0)

    @staticmethod
    def backward(ctx, grad_output):
        """
        In the backward pass we receive a Tensor containing the gradient of the loss
        with respect to the output, and we need to compute the gradient of the loss
        with respect to the input.
        """
        input, = ctx.saved_tensors
        grad_input = grad_output.clone()
        grad_input[input < 0] = 0
        return grad_input


dtype = torch.float
device = torch.device("cpu")
# device = torch.device("cuda:0") # Uncomment this to run on GPU

# N is batch size; D_in is input dimension;
# H is hidden dimension; D_out is output dimension.
N, D_in, H, D_out = 64, 1000, 100, 10

# Create random Tensors to hold input and outputs.
x = torch.randn(N, D_in, device=device, dtype=dtype)
y = torch.randn(N, D_out, device=device, dtype=dtype)

# Create random Tensors for weights.
w1 = torch.randn(D_in, H, device=device, dtype=dtype, requires_grad=True)
w2 = torch.randn(H, D_out, device=device, dtype=dtype, requires_grad=True)

learning_rate = 1e-6
for t in range(500):
    # To apply our Function, we use Function.apply method. We alias this as 'relu'.
    relu = MyReLU.apply

    # Forward pass: compute predicted y using operations; we compute
    # ReLU using our custom autograd operation.
    y_pred = relu(x.mm(w1)).mm(w2)

    # Compute and print loss
    loss = (y_pred - y).pow(2).sum()
    if t % 100 == 99:
        print(t, loss.item())

    # Use autograd to compute the backward pass.
    loss.backward()

    # Update weights using gradient descent
    with torch.no_grad():
        w1 -= learning_rate * w1.grad
        w2 -= learning_rate * w2.grad

        # Manually zero the gradients after updating weights
        w1.grad.zero_()
        w2.grad.zero_()

PyTorch:nn 

       Computational graphs and autograd are very powerful examples of defining complex operators and automatically adopting derivatives. However, for large neural networks, the original autograd may be a bit too low. When building the neural network, we often consider divide into several layers , wherein some of the layers having a parameter study  , these parameters will be optimized in the learning process. In TensorFlow, packages like KerasTensorFlow-Slim, and TFLearn provide higher-level abstractions on the original calculation graph, which are useful for building neural networks. In PyTorch, this nnpackage achieves the same purpose. This nn package defines a set of Modules , which are roughly equivalent to neural network layers. The module receives input tensors and calculates output tensors, but it can also maintain internal states, such as tensors containing learnable parameters. The nnpackage also defines a set of useful loss functions, which are usually used when training neural networks. In this example, we use this nnpackage to implement our two-layer network:

# -*- coding: utf-8 -*-
import torch

# N is batch size; D_in is input dimension;
# H is hidden dimension; D_out is output dimension.
N, D_in, H, D_out = 64, 1000, 100, 10

# Create random Tensors to hold inputs and outputs
x = torch.randn(N, D_in)
y = torch.randn(N, D_out)

# Use the nn package to define our model as a sequence of layers. nn.Sequential
# is a Module which contains other Modules, and applies them in sequence to
# produce its output. Each Linear Module computes output from input using a
# linear function, and holds internal Tensors for its weight and bias.
model = torch.nn.Sequential(
    torch.nn.Linear(D_in, H),
    torch.nn.ReLU(),
    torch.nn.Linear(H, D_out),
)

# The nn package also contains definitions of popular loss functions; in this
# case we will use Mean Squared Error (MSE) as our loss function.
loss_fn = torch.nn.MSELoss(reduction='sum')

learning_rate = 1e-4
for t in range(500):
    # Forward pass: compute predicted y by passing x to the model. Module objects
    # override the __call__ operator so you can call them like functions. When
    # doing so you pass a Tensor of input data to the Module and it produces
    # a Tensor of output data.
    y_pred = model(x)

    # Compute and print loss. We pass Tensors containing the predicted and true
    # values of y, and the loss function returns a Tensor containing the
    # loss.
    loss = loss_fn(y_pred, y)
    if t % 100 == 99:
        print(t, loss.item())

    # Zero the gradients before running the backward pass.
    model.zero_grad()

    # Backward pass: compute gradient of the loss with respect to all the learnable
    # parameters of the model. Internally, the parameters of each Module are stored
    # in Tensors with requires_grad=True, so this call will compute gradients for
    # all learnable parameters in the model.
    loss.backward()

    # Update the weights using gradient descent. Each parameter is a Tensor, so
    # we can access its gradients like we did before.
    with torch.no_grad():
        for param in model.parameters():
            param -= learning_rate * param.grad

to be continued. . . . . . . . . . . . . . . . . . .

 

 

Guess you like

Origin blog.csdn.net/wzhrsh/article/details/109567326