Introduction-Frequency vs. Bayesian

Introduction-Frequency vs. Bayesian

\(X\) : data

\[\begin{equation} \begin{aligned} X=(x_{1}\quad x_{2}\quad \cdots\quad X_{N})^{T}_{N \times p} \\ =\left(\begin{array}{cccc}x_{1} & x_{12} & \cdots & x_{1 p} \\ x_{11} & x_{22} & \cdots & x_{2 p} \\ \vdots & & & \\ x_{m} & x_{N 2} & \cdots & x_{n p}\end{array}\right)_{N \times p} \end{aligned} \end{equation} \]

\(\theta\)parameters

\(x \sim p(x|\theta)\)

Frequency school

Think that $ \ theta $ is an unknown constant, \ (x \) is a random variable \ (\ quad rv \)

\[\theta_{MLE}= arg\max_{\theta} \log P(x|\theta) \]

among them:

\[L(\theta) = \log P(x|\theta) \]

\[x_{i} \sim^{iid} p(x|\theta) \]

\[P(x|\theta) = \prod_{i}^{N} p(x_{i}|\theta) \\ log P(x|\theta) = \sum_{i}^{N} p(x_i | \theta) \]

Bayesian

Think that \ (\ theta \) is a variable \ (rv \) , and obey a certain distribution \ (\ theta \ sim p (\ theta) \) In general, \ (p (\ theta) \) is called the first Test

Bayes' theorem

\[P(\theta|X) = \frac{P(X|\theta) P(\theta)}{P(X)} \]

among them

\ (P (\ theta | X) \) is the posterior probability

\ (p (\ theta) \) is the prior probability

\(P(X)= \int_{\theta} P(X|\theta)P(\theta)\)

\ (\ Theta \) in \ (P (X | \ theta) \) is likelihood(likelihood estimation)

MAP: Maximum posterior probability estimate

\[\begin{aligned} \theta_{MAP} = \arg \max_{\theta} P(\theta|X)\\ \propto \arg \max P(X|\theta) P(\theta) \end{aligned} \]

Bayesian estimation

\[p(\theta|x) = \frac{p(x|\theta)p(\theta)}{\int_{\theta}p(x|\theta)p(\theta)d\theta} \]

Bayesian prediction

Sample data \ (X \)

Forecast data required \ (\ widehat {x} \)

The bridge \ (\ quad \ theta \)

\[\begin{equation} \begin{split} p(\widehat{x}|X) = \int_{\theta}p(\widehat{x},\theta|X)d\theta \\ = \int_{\theta}p(\widehat{x}|\theta)p(\theta|X)d\theta \end{split} \end{equation} \]

Guess you like

Origin www.cnblogs.com/nightamber/p/12741551.html