Some notes about the Bessel inequality and Parseval equation

1.  BesselInequality : set Xof inner product space, M=\left \{e_{n}:n\geqslant 1 \right \}as a standard positive intersection, Besselthe following inequation:

\sum_{i=1}^{\infty} \left |<x,e_{i}> \right |^{2} \leqslant \left \| x \right \|^{2}

Proved relatively simple, first order:

 y=\sum_{i=1}^{n} <x,e_{i}> e_{i}

\forall x\in X, There are (proof omitted):

<y,x-y>= ... =0\Rightarrow \left \| x \right \|^{2}=\left \| y \right \|^{2}+\left \| x-y \right \|^{2}

So there: \left \| y \right \|^{2} \leq \left \| x \right \|^{2}that

\sum_{i=1}^{n} \left |<x,e_{i}> \right |^{2} \leqslant \left \| x \right \|^{2}

Use bounded monotonic sequence has limit, get:

\sum_{i=1}^{\infty} \left |<x,e_{i}> \right |^{2} \leqslant \left \| x \right \|^{2}

Note: \sum_{i=1}^{\infty} \left |<x,e_{i}> \right |^{2}Convergence than \sum_{i=1}^{\infty} <x,e_{i}> e_{i}a little stronger. It can be shown Hilbertboth the same lower space convergence, more generally, are:

\ Sum_ {i \ geq 1} <a_ {i}, e_ {i}>The \sum_{i\geq 1} \left | a_{i} \right |^{2}same convergence.

2. Consider a special inner product space, i.e. Hilbertspace:

  • The following infinite series must be convergent:

\sum_{i=1}^{\infty} <x,e_{i}> e_{i}

  • If Mis an orthonormal basis (completely orthogonal sets standard), then the formula converges tox
  • If Mis an orthonormal basis, the inequality is further expressed as Bessel Parseval equation:

\sum_{i=1}^{\infty} \left |<x,e_{i}> \right |^{2} = \left \| x \right \|^{2}

3. Comprehensive: Parseval equation is Bessel inequality complete inner product space + standard completely orthogonal sets under a special case.

4. Application of Fourier analysis.

Continuous update. . .

 

Published 14 original articles · won praise 19 · views 30000 +

Guess you like

Origin blog.csdn.net/qq_24694761/article/details/84330890