地理信息系统基础知识

参考:https://www.cnblogs.com/onsummer/p/7451128.html

目录:

1、经纬度与GCS(Geographic Coordinate System, 地理坐标系统):介绍一下以经纬度为准的地理坐标系统,也顺带提及一下我国的高程坐标系。主要涉及的内容有:大地水准面问题,椭球问题,常见的GCS(如北京54,西安80,CGCS2000,WGS84等),让大家看到GIS数据中的GCS马上就能知道这是什么东西。
2、平面坐标与PCS(Projection Coordinate System, 投影坐标系统):介绍一下以平面直角坐标系为量度的投影坐标系统。主要涉及的内容有:PCS与GCS的关系,我国常见的PCS(高斯克吕格、兰伯特/Lambert、阿尔伯斯Albers、墨卡托Mercator、通用横轴墨卡托UTM、网络墨卡托Web Mercator)。
3、GCS和PCS的转化问题(三参数与七参数问题):实际操作过程中遇到的种种问题,如投影不对会出现什么情况、如何转换GCS、如何切换PCS(重投影问题)等问题,涉及一些数学转换的思维,需要有一定的空间想象能力。
4、火星坐标问题:简单介绍一下所谓的火星坐标。

1.经纬度与GCS

1.1 凹凸不平的地球
谁都知道地球表面不平坦,它甚至大概形状都不是一个正球体,是一个南北两极稍扁赤道略胖的胖子,胖度大概是20km,在外太空几乎看不出来的,这也可能和星球长期受到潮汐引力、太阳引力以及自身旋转的向心力有关。这里不是地球科学,就不再深究了。

为了能让地球出现在数学家的公式里,我们曾经走过了2个阶段:用平静的海面描述地球——用虚拟的旋转椭球面描述地球表面。

这里也不是地图学,再深入下去其实还有似大地水准面等概念。就挑重点讲。

“假设地球表面都是水,当海平面风平浪静没有波澜起伏时,这个面就是大地水准面。”大家应该知道,在太空失重的环境下,水相对静止状态是个正球体,那么肯定很多人就认为,大地水准面就是个正球面。不是的,还需要考虑一个问题:地球各处的引力不同。引力不同,就会那儿高一些,这儿低一些,尽管这些微小的差距肉眼难以观测出来,可能隔了好几千米才会相差几厘米。所以,在局部可能看起来是个球面,但是整体却不是。显然,用大地水准面来进行数学计算,显然是不合适的,至少在数学家眼中,认为这不可靠。
所以找到一个旋转椭球面就成了地理学家和数学家的问题。(注意区分椭球面和旋转椭球面这两个数学概念,在GCS中都是旋转椭球面)

给出旋转椭球面的标准方程:
x²/a²+y²/a²+z²/b²=1
其中x和y的参数相同,均为a,这就代表一个绕z轴旋转的椭圆形成的椭球体。不妨设z轴是地球自转轴,那么这个方程就如下图是一个椭球体,其中赤道是个圆。
在这里插入图片描述
这样,有了标准的数学表达式,把数据代入公式计算也就不是什么难事了。
由此我们可以下定义,GIS坐标系中的椭球,如果加上高程系,在其内涵上就是GCS(地理坐标系统)。其度量单位就是度分秒。
描述一个旋转椭球面所需的参数是方程中的a和b,a即赤道半径,b即极半径,f=(a-b)/a称为扁率。
与之对应的还有一个问题:就是坐标中心的问题。(地球的中心在哪里?)

【注】十九世纪发现赤道也是一个椭圆,故地球实际应以普通椭球面表示,但是由于各种原因以及可以忽略的精度内,一直沿用旋转椭球体作为GCS。

1.2 参心坐标系、地心坐标系
上过中学物理的人知道,物体均有其质心,处处密度相等的物体的质心在其几何中心。所以,地球只有一个质心,只是测不测的精确的问题而已。由地球的唯一性和客观存在,以地球质心为旋转椭球面的中心的坐标系,叫地心坐标系,且唯一。当然,由于a、b两个值的不同,就有多种表达方式,例如,CGCS2000系,WGS84系等,这些后面再谈。
【注】地心坐标系又名协议地球坐标系,与GPS中的瞬时地球坐标系要对应起来。
但是又有一个问题——政治问题,地图是给一个国家服务的,那么这地图就要尽可能描述准确这个国家的地形地貌,尽量减小误差,至于别国就无所谓。所以,就可以人为的把地球的质心“移走”,将局部的表面“贴到”该国的国土,使之高程误差尽量减小到最小。这个时候,就出现了所谓的“参心坐标系”。即椭球中心不在地球质心的坐标系。如下图:
在这里插入图片描述
绿色的球就是为了贴合赤道某个地方而产生了平移的参心系(这里只是个例子,而且画的有点夸张)。
我国常用的参心系及对应椭球:
北京54坐标系:克拉索夫斯基椭球体
西安80坐标系:IAG75椭球体

我国常用的地心系及对应椭球:
WGS84坐标系:WGS84椭球体(GPS星历的坐标系,全球统一使用,最新版于2002年修正)
CGCS2000坐标系:CGCS2000椭球体(事实上,CGCS2000椭球和WGS84椭球极为相似,偏差仅有0.11mm,完全可以兼容使用)

为什么CGCS2000和WGS84要略微有些偏差?这是因为WGS84系是GPS的坐标系,而我国北斗定位则是需要自己的坐标系,就搞了一波CGCS2000。

1.3 我国常见GCS

1.3.1 北京54坐标系(参心)
新中国成立以后,我国大地测量进入了全面发展时期,再全国范围内开展了正规的,全面的大地测量和测图工作,迫切需要建立一个参心大地坐标系。由于当时的“一边倒”政治趋向,故我国采用了前苏联的克拉索夫斯基椭球参数,并与前苏联1942年坐标系进行联测,通过计算建立了我国大地坐标系,定名为1954年北京坐标系。因此,1954年北京坐标系可以认为是前苏联1942年坐标系的延伸。它的原点不在北京而是在前苏联的普尔科沃。
椭球体:Krasovsky椭球
极半径b=6 356 863.0187730473 m
赤道半径a=6 378 245m
扁率=1/298.3
高程系:56黄海系

1.3.2 西安80坐标系(参心)
改革开放啦,国家商量要搞一个更符合国用的坐标系——西安80坐标系,该坐标系的大地原点设在我国中部的陕西省泾阳县永乐镇,位于西安市西北方向约60公里。
椭球体:IAG椭球(全名是啥还得去翻翻课本。。。)
极半径b=6 356 755m
赤道半径a=6 378 140m
扁率=1/298.25722101
高程系:85黄海系

1.3.3 WGS84坐标系(地心)
全称World Geodetic System - 1984,是为了解决GPS定位而产生的全球统一的一个坐标系。
椭球体:WGS84椭球
极半径b=6 356 752.314 245 179 5m
赤道半径a=6 378 137 m
扁率=1/298.257223563
高程系:?根据国家需求定?

1.3.4 CGCS2000坐标系(地心)
2000国家大地坐标系是全球地心坐标系在我国的具体体现,其全称为China Geodetic Coordinate System 2000,其原点为包括海洋和大气的整个地球的质量中心。
椭球体:CGCS2000坐标系
极半径b=6 356 752.314 140 355 8m
赤道半径a=6 378 137m
扁率=1/298.257222101
高程系:85黄海系
【注】CGCS2000的定义与WGS84实质一样。采用的参考椭球非常接近。扁率差异引起椭球面上的纬度和高度变化最大达0.1mm。当前测量精度范围内,可以忽略这点差异。可以说两者相容至cm级水平

最后一张表总结一下:
在这里插入图片描述
2. 平面坐标与PCS

说完了以经纬度为计量单位的GCS,那么我再来说说以平面(空间)直角坐标系为度量衡的投影坐标系(PCS,Projection Coordinate System)。说一个具体的问题以解释为什么要用PCS。
如何用经纬度表达一块地的面积?这没办法吧?经纬度本身不带单位,度分秒仅仅是一个进制。而且同样是1度经度,在不同的纬度时代表的弧段长是不一样的。这就给一些地理问题带来了困惑:如何建立一个新的坐标系使得地图分析、空间分析得以定量计算?
PCS——投影坐标系就诞生了。
我要着重介绍一下我国的6种常用投影方式:

高斯克吕格(Gauss Kruger)投影=横轴墨卡托(Transverse Mercator)投影
墨卡托(Mercator)投影
通用横轴墨卡托(UTM)投影
Lambert投影
Albers投影
Web Mercator(网络墨卡托)投影

光线打到物体上,使得物体产生的阴影形状,就叫它的投影。这个不难理解。
这里我想问一个问题:既然投影物体,是不变的,那么我把投影的平面改为曲面呢?
这就产生了不同的投影,比如投射到一个圆锥面上,一个圆柱面上,一个平面上…等等。不同的投影方式有不同的用途,也有了不同的投影名称。但是,PCS是基于存在的GCS的,这个直接规定。没有GCS,就无从谈PCS,PCS是GCS上的地物投射到具体投影面的一种结果。即:PCS=GCS+投影方式

3. GCS与PCS的转换问题(ArcGIS实现)

3.1 GCS转GCS

这就是属于空间解析几何里的空间直角坐标系的移动、转换问题,还有个更高级的说法——仿射变换。
我们知道,空间直角坐标系发生旋转移动缩放,在线性代数里再常见不过了。在摄影测量学中,旋转矩阵就是连接像空间辅助坐标系与像空间坐标系的转换参数(好像不是这俩坐标系,忘了)欲将一个空间直角坐标系仿射到另一个坐标系的转换,需要进行平移、旋转、缩放三步,可以无序进行。而平移、旋转又有三个方向上的量,即平移向量=(dx,dy,dz)和旋转角度(A,B,C),加上缩放比例s,完成一个不同的坐标系转换,就需要7参数
我们知道,地心坐标系是唯一的,即原点唯一,就说明平移向量是0向量,如果缩放比例是1,那么旋转角度(A,B,C)就是唯一的仿射参数,即3参数

4. 火星坐标

火星坐标系原名国测局坐标系(GCJ-02),火星坐标这个东西很常见,出现在互联网地图上。例如百度、腾讯、谷歌等地图。出于保密等政治因素,地图的GCS坐标值,会被一种特殊的数学函数加密一次,会偏离真实坐标数百米的距离,但是反馈到用户端的却是正确的位置信息(也就是说你拿到GCS坐标也没用,拿GPS到实地跑跟拿着地图定位,可能会偏出几十米甚至一百米的距离)。

发布了58 篇原创文章 · 获赞 42 · 访问量 11万+

猜你喜欢

转载自blog.csdn.net/m0_37251750/article/details/94713675